rogrammerziianval

A highly scalable, open architecture,
internet messaging system running
on Windows and Linux platforms.

I[I’ﬂernet

ﬁ rer

I__"' ¥ 1
il IEMS
B
b |

~ VERSION /.

] MA INTERNATIONAL MESSAGING ‘ l-“:::::ti'i
- ASSOCIATES Mevsagis

COPYRIGHT © 2001 - 2003 IMA Services Limited. All rights reserved.

This manual may be redistributed and reproduced, in any form or by any means, except as pro-
vided in the license agreement governing the computer software and documentation.

IMA provides this manual “as is”, without warranty of any kind, either express or implied, includ-
ing but not limited to, the implied warranties of merchantability and fitness for a particular pur-
pose. IMA assumes no responsibility or liability for errors or inaccuracies written that may appear
on this manual and may make improvements and changes without prior notice..

Except as permitted in such license, no part of this documentation may be appended, modified or
deleted without the prior written permission of International Messaging Associates.

Use, duplication, or disclosure by the government is subject to restrictions as set forth in the sub-
paragraph (c) (1) (iii) of the Rights in Technical Data and Computer Software clause at
DFARS52.227-7013, May, 1987.

ISBN: 962-8137-38-7

Document ID: IEMS7PROGMAO001
Date of Publication: June, 2003

The following are trademarks of their respective companies or organizations:
Internet Exchange is a trademark of International Messaging Associates Corporation.
Linux is a registered trademark of Linus Torvalds.

cc:Mail is a trademark of cc:Mail Inc., a wholly owned subsidiary of Lotus Development Corpora-
tion, an IBM subsidiary.

Lotus Notes is a trademark of Lotus Development Corporation, an IBM subsidiary.

MS-Windows and MS Visual C++ are trademarks of © 1999 Microsoft Corporation.
All rights reserved.

Portions of this product are based on software developed by the following universities/
organizations:

CGl script Copyright © 1997 by Eugene Kim (eekim@eekim.com).

LDAP support is based on software developed by the University of Michigan and its contributors.

CONTENTS

Preface

Overview

Introduction

Chapter 1

Chapter 2

Chapter 3

... 5
Background 7
IEMS System Architecture 8
IEMS APIS .. 9
IEMS Modules 1
MTA | PreproCesSOr . . . oo vttt e e e e e e 11
Directory Services. 12
Distribution ListManager 12
SMTPC (SMTP Client)o e e e e 12
SMTPD (SMTP Daemon)ottt e e e e s 12
BOMT P ..o 12
Message Store 12
LMDA (Bayesian Filtering / MailSort) 12
MTA Shared Message QuUeUe it 13
Message Queue APl e 15
Envelope Preprocessing & Directory Lookup Stage 17
Calling of the Preprocessor Plug-ins Stage 18
MQ API Class Definitions, 21
Class CMQ 21
Class Declaration 21
Methods Used. 21
Class cMeSSageo 22
ClasS . .
Declaration 22
Methods Used. 22
ClasscEnvHeader 23
Class Declaration 23
Methods Used. 23
ClasscUserInfo 24
Class Declaration 24
Methods Used. 24
ClasscChannel 25
Class Declaration 25
Methods Used. 25
MQ API FunctionReferencet 27
cMQ::

OpenMQChannel 27
CMQPUIMSG . .. 27
cMQ::

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

Chapter 4

Chapter 5

Chapter 6

GetMsgPath 28

CMQ::GetMSg 28
CMQuDEIMSg . . . 28
cMQ::CloseMQChannel 29
cChannel:IsExist 29
cChannel:Add 29
cChannel::Del 30
cMQ::GetPathName 30
cMQ::GetMsgENV 30
MQAPIProgram Flow 31
How ToUse The MQAPIt 33
Prerequisites 33
System Requirements 33
MQAPIToolKit 33
Building Applications Using MQAPI L 34
Headerfiles 34
Maapi.h. .. e 34
API_MQ.liborlibmg.so. 34
Adding Preprocessor Plug-ins In The Configuration File 35
Creating The New Channel For Your Application 37
Conclusion 37
IEMS Client APl i i ittt 39
Authentication / Password Management 39
Message Store ACCESSottt e 40
Folder ACCESS. 40
MesSSage ACCESSt 40
Message Header and Content Access. 41
Message Submission 43
Sample Applications 43
Web Mail Client 43
Client APIC++Interfaceciiiiiiiiiiirinrnnnn 47
Installation e 47
Microsoft Windows (Win32) 47
LiNUX . . e 48
Software License e 48
The IEMSC Classv i e e e 48
Authentication / Password Management 52
Authenticate (Form 1). 52
Authenticate (Form 2). 53
LOgoUt. . . e 53
UpdatePassword 53
Message Folder Access i 54
CreateFolder. 54
RenameFolder 54
DeleteFolder. 54
ReadFolderAttributes 55
GetAllFoldernames. e 55
FreeFoldernames. 56
Message UID ACCESSottt e 56
GetUIDS . ..o 56

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

Chapter 7

GetUIDsWithSearchKey. i 57

GetPrevNextUID. 58
GetPrevNextUIDWithSearchKey 59
GetMessagelnfo. e 60
COopPYMESSAgE . . .ttt 61
MoveMessage e 61
DeleteMessage e 61
MarkMessageAsRead e 61
Message Header/Content Access, 62
GetMimeStructure e 62
GetMimeBody. e 63
GetMessageHeader. e 64
GetMessageSouUrceot e 64
GetEmbeddedHeaders. 65
Message Submission 65
ComposeMail 65
Other FUNctions e 67
FreeString.o 67
FreeBuffer 67
FreeMimeBody. 67
IsSpecialFolder. 67
utf7_decimal. 68
GetHomeDirectory 68
Client APIPHP Interfacec.ciiiiiean.. 69
Installation e 69
Microsoft Windows (Win32) i 70
LiNUX. .o 70
Software License 71
Authentication / Password Management 71
iemsc_authenticate 71
IeMSC_l0gout 72
iemsc_updatepassword 72
Message Folder ACCeSS i 72
iemsc_createfolder. 72
iemsc_renamefolder. 73
iemsc_deletefolder. 73
iemsc_readfolderattributes. 73
iemsc_readfolderattributes_with_size 74
iemsc_readallfoldernames 75
Message UID ACCESS it 75
ieMmsC_getuids 75
iemsc_getprevnextuid 76
iemsc_searchuids. e 76
iemsc_searchprevnextuid. 77
iemsc_getmessageinfo. 78
iemsc_getmessagesinfo. 78
IEMSC_COPYMESSAGE . - & v v v ettt e e e et e 79
IEMSC_MOVEMESSAGE. - « « v vttt e et e e e et e e e e 79
iemsc_deletemessage 80
iemsc_markmessageasread 80
Message Header/ Content Access i ... 80
iemsc_getmessagestructure oL 80
iemsc_getmessagebody. 81

INTERNET EXCHANGE MESSAGING SERVER 7 PRORGRAMMER’S MANUAL 3

iemsc_getmessageheader. 82

iemsC_getmessagesourCeot e 82
iemsc_getembeddedheaders. L. 82
Message Submission 83
iemsc_composemail. 83
Other Functions e 85
lemsc isread 85
iemsc_isspecialfolder. 85
iemsc _utf7 to decimal......... 85
Appendix A TESTMQ.C Sample Programcciuuennn. 87
Appendix B MQAPIErrorCodes ...t 91
Appendix C Client APIConstants iiiinnnnnnn 93
UIDSortFields 93
UID Sort Orderot e e 93
UID Search Field e 93
Client APIError Codeso vt e 94
Appendix D Message Store Naminglssues 97
Appendix E License Agreement 929
IndeX e e 101

4 INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

PREFACE

The Internet Exchange Messaging Server (IEMS) 7 supports both a C++
Message Queue Application Programming Interface (MQAPI) and a C++ /
PHP Client Application Programming Interface (IEMSCAPI). The MQAPI
permits submission and retrieval of messages to and from the IEMS Mes-
sage Queue (Message Transfer Agent), while the IEMSCAPI is used for the
writing of messaging enabled applications, including web mail clients.

This manual is intended for C++ and PHP programmers who wish to create
third party software for IEMS. It also discusses the steps on how the MQAPI
connect to the system. It describes how to use the MQAPI and IEMSCAPIs
to write third party applications that submit and fetch messages to and from
the IEMS Message Queue.

This document is organized as follows:

Overview Background information on the Internet Exchange Mes-
saging Server

Introduction Detailed Discussion of IEMS Modules

Chapter 1 Message Queue API
Chapter 2 MQ API Class Definitions
Chapter 3 MQ API Function Reference
Chapter 4 How To Use The MQ API
Chapter 5 IEMS Client API

Chapter 6 Client API C++ Interface
Chapter 7 Client API PHP Interface

Appendix A MQ API Test Program - testmq.c

Appendix B MQ API Error Codes

Appendix C Client API Constants

Appendix D Message Store Folder Naming Issues

Appendix E License Agreement

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 5

PREFACE

6 INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

OVERVIEW

Background

The Internet Exchange Messaging Server (IEMS) is a highly modular and
scalable open architecture messaging system that complies with Internet
standards to ensure smooth and reliable transmission of messages. It can be
used from small singel machine installations to fully distributed systems link-
ing geographically distributed sites into a common set of logical domains. At
the heart of IEMS is a number of components which work together to send

and receive messages (see Figure 1 on page 7).

SMTP/ |,
MTA
Message Transfer
Agent
Input Queue Directory
Service
Preprocessor (anti-virus, anti-spam, etc.)
MTA Shared Message Queue
Quota
L e || e
DL SMTPC / m cc:Mail
BSMTPOUT Y Local Message
Mail Store
A Delivery
cc:Mail Agent
;f:ve; Post (LMDA)
Office
T T | Migration
Support

Figure 1: IEMS System Architecture

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

OVERVIEW

IEMS SYSTEM ARCHITECTURE

IEMS System IEMS input channels receive messages from different applications supported
Architecture by IEMS. These include SMTPD (SMTP traffic from the Internet / Intranet),
Distribution List Manager, Web Mail Client, and others. |IEMS supports the

following input channels:

« BSMTPIN - receives messages from the Internet transmitted via
POP3 connection

* DL - receives messages sent to distribution lists

« LOCALOUT - channel used by the LMDA to forward messages via
the Mailsort module

« NOTESOUT - imports messages from the Notes environment.
+ CCOUT - imports messages from the Lotus cc:Mail environment.
+ SMTPD - receives messages from the Internet via standard SMTP

* WEB MAIL CLIENT - web based user agent that connects users to
the local Message Store.

The Input channels submit messages received to the MTA input queue. The
Preprocessor takes these messages, and then performs address resolution/
expansion, virus scanning, spam checks, disclaimer insertion before insert-
ing them into the MTA Shared Message Queue.

IEMS output channels take messages from the MTA Shared Message
Queue and deliver them to specific applications supported by IEMS. These
include SMTPC (outbound SMTP traffic to the Internet / Intranet), Distribution
Lists, Local Message Store, and others. IEMS supports the following output
channels:

+ BSMTPOUT - delivers messages to its intended recipient on the
other end of the BSMTP Tunnel

* CCIN - exports messages to the cc:Mail environment

+ DLOUT - delivers messages intended for Distribution List members
*+ LOCAL - deliver messages to the Lotus Message Store

* NOTESIN - delivers messages to the Lotus Notes environment

*+ SMTPC - receives messages destined for the Internet from the
IEMS MTA and routes them to other mail servers on the Internet

The Directory server, which uses the LDAP access protocol, stores and man-
ages information about users, groups, mailing lists, alias processing and mail
routing. The Preprocessor accesses this information to determine recipient
addresses/routing information for each message.

8 INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

OVERVIEW

IEMS APIs

IEMS APIs IMA provides two sets of Application Programming Interfaces (APIs) for mes-
saging system developers. Developers looking to build gateway modules, or
other applications that need to tightly integrate with the IEMS MTA and Pre-
processor should use the Message Queue (MQ) API. This API provides the
tools necessary to directly manipulate the MTA Shared Message Queue. In
addition, programmers can make use of this API to build new Preprocessor
filter modules.

Developers wanting to write user applications or other applications that sit
outside of the messaging system should use the Client API's. The IEMS Cli-
ent API provides both C++ as well as PHP interfaces to the application devel-
oper. It encapsulates most of the functional details provided by the different
IEMS subsystems and provides a simplified API. The Client API provides a
simple to use interface to the IEMS Message Store, and provides simple
tools for message submission. User authentication and password manage-
ment tools are also included.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 9

OVERVIEW
IEMS APIs

10 INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

INTRODUCTION

The Internet Exchange Messaging Server (IEMS) is a highly modular and
scalable open architecture system. It can be used from small single machine
installations to fully distributed systems linking geographically distributed
sites into a common set of logical domains (see Figure 1 on page 7). Its var-
ious components can be run on a single machine or in a distributed environ-
ment.

IEMS 7 introduces a new integrated Anti-Spam approach to message recep-
tion and delivery. The MTA Pass-Through technology employed by IEMS 7
allows end users (message store accounts), individual distribution list main-
tainers, and connector modules to define their own security profiles indepen-
dent of the rest of the system. At the same time the messaging system
administrator can still define an overall global security policy, where some
anti-spam measures will be handled directly by the MTA (such as reliable
DNS-BL identified traffic). Other measures which may be desired by part of
the user community, such as DNS-BL's with known high false positive rates
(at the time of this writing, SpamCop and a few others have received a lot of
industry coverage for their perceived indiscriminate listing practices) can then
be passed through to the users for consultation on a case by case basis.

In most conventional messaging systems, security measures are employed
on a system wide basis, making the choice of tools, such as DNS-BL's, criti-
cal. |IEMS MTA Pass-Through technology changes this by allowing the
administrator to be able to employ many more countermeasures, enabling
only those that have been proven to be universally effective at the MTA level,
and letting users pick and choose what additional measures they may or may
not wish to apply to their individual message traffic.

IEMS Other IEMS modules include the MTA / Preprocessor, Directory Services,
Modules Distribution List Manager, SMTPC, SMTPD, BSMTP, Message Store,
LMDA, and the MTA Shared Message Queue.

MTA / Preprocessor

The MTA is a message switch responsible for routing mail messages
received by the Preprocessor to the intended channels. Upon receiving mes-
sages, the MTA temporarily stores the messages locally in a shared mes-
sage queue while analyzing the recipient's address. It will either route the
message to the recipient's local address or forward the mail to another MTA.

The Preprocessor Unit is an integrated subsystem of the MTA. It is equipped
with anti-spam and anti-virus plug-in modules to protect the system against
viruses and spam mail. It incorporates an auto text insertion engine, provid-
ing the capability to insert disclaimers into messages passing through the

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 1

INTRODUCTION

IEMS MODULES

12

MTA. Channel Action Matrices provide the system administrator with a flex-
ible tool in configuring which plug-in modules should be run for a particular
message based upon message flow through the system.

Directory Services

IEMS Directory Services are designed to effectively manage information
about users, groups, mailing lists, alias processing and mail routing. It has a
rich set of searching capabilities that makes directory lookup fast and effi-
cient.

Distribution List Manager

The Distribution List Manager allows messages to be sent to list subscribers
by simply submitting messages to a single address. It enables the system
administrator to create electronic mailing lists that support the following fea-
tures: mail blocking, automatic mailing list subscription and un-subscription,
and setting the preferred delivery options. It also provides the system admin-
istrator with an option to accept or reject subscribers to the mailing list.

SMTPC (SMTP Client)

SMTPC delivers messages to the Internet. It provides fast mail delivery by
processing messages based on their priority weight and by assigning differ-
ent processors for deferred and pending messages.

SMTPD (SMTP Daemon)

SMTPD listens for incoming messages on the Internet. It is capable of sus-
taining simultaneous SMTP connections by creating multiple threads,
thereby minimizing delay in message delivery.

BSMTP

Batch SMTP (BSMTP) tunnels messages so that they can pass through non-
SMTP transports, such as POP3 (Post Office Protocol version 3). The origi-
nal envelope and delivery information of each message is maintained across
the tunnel.

Message Store

The Message Store acts as a dedicated mail repository for storing, retrieving
and manipulating messages, while also enabling users to access their mail-
boxes via any POP3- and/or IMAP4-capable client. Users may also access
their mail from the Message Store using the IEMS Web Mail Client, or any
third-party application written around the Open Client API.

LMDA (Bayesian Filtering / MailSort)

Messages destined for a local user's Message Store account pass through
the Local Mail Delivery Agent (LMDA) prior to delivery. The LMDA consists
of the User Spam Controls, Bayesian Filter Engine, and the MailSort Engine
(see Figure 2). Each of these three modules perform certain filtering and/or
message filing operations on behalf of the user. Unlike similar operations
that some mail clients use, these actions are performed by the messaging
system, and at the time of message delivery. Once these modules are
optionally configured by the user, their actions are transparent, as their mail
client is not involved, and the actions happen as soon as messages arrive.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

INTRODUCTION

IEMS MODULES

The User Spam Control module looks for messages that have been tagged
by the MTA as potential spam for one or more reasons. This can be due to
DNS-BL tagging (with the offending BL or BL's identified), and/or as a result
of content filtering. Users can choose for each control if they want to act upon
the tagging or not, and an appropriate action to take (ignore, discard, or file
in the user specified spam folder).

The Bayesian Filtering module utilizes a statistical technique for spam detec-
tion based upon the users database of offending spam messages. Each user
will have a different database based upon message they have individually
categorized as spam according to their wishes. Messages caught by the
Bayesian Filtering module can be either discarded, filed in a spam or suspi-
cious folder, or passed to the MailSort engine for further processing.

The MailSort engine performs simple header pattern matching for the pur-
pose of automatic filing of incoming messages as well as a vacation utility
that is capable of sending vacation notifications during periods when the
recipient is away.

‘ MTA / Preprocessor ‘
Messages &

LMDA
Local Mail Delivery Agent

Per-User Anti-Spam Controls
Discard ‘

File to User <
Spam Folder

Bayesian Filtering Engine = Message

Store

Discard

Bounce ¢——
File to User Spam /
Suspicious Folder

MailSort Engine

Figure 2:LMDA Architecture

MTA Shared Message Queue

Temporarily stores messages inserted by the Preprocessor Unit after prepro-
cessing the messages for virus scanning, spam control, among others. Later
they will be retrieved by the respective output channel processors for delivery
to the intended recipients or downstream MTA's.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 13

INTRODUCTION
IEMS MODULES

14 INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

CHAPTER 1

Message Queue API

The Message Queue is the centralized mail repository that stores messages
(physical) awaiting delivery in holding areas called queues. The queues are
classified into two groups: the input and output queues.

The input channels submit messages to the input queues for preprocessing
while the output channels fetch preprocessed messages from the output
queues to deliver the messages to their intended recipients (see Figure 3 on
page 15).

Input Channels Input Queue

Preprocessor
Database

Output Queue

PREPROCESSOR

\

Output Channels

MQStrDb

Legend:

e=—fp . submit messages

- ®© e - fetch information

Figure 3: Message Flow

Software developers can create applications that submit and fetch messages
to the Message Queue via the MQAPI.

The MQAPI is a set of functions/routines that enable access to the Message
Queue. Implemented as a dynamic link library (API_MQ.dIl for Windows and

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 15

CHAPTER 1 MESSAGE QUEUE API

libmg.so for Linux), the MQ API consists of functions that perform the follow-
ing operations:

» Open a connection to the MQ Server
* Insert a message into an input channel
» Fetch a message from an output channel
+ Obtain the path where the message was physically stored
* Delete fetched message from the output channel
» Close an open connection to the MQ Server
Upon receipt of messages, an input channel opens a connection to the MQ

server (see Figure 4 on page 16) and submits its messages to its respective
input queue in the Message Queue Server.

NOTESOUT

BSMTPIN
LOCAL OUT

2 g 3 =
g @ o c
g] ! & 3 8
(<} 8 e bt = =] o
= ° 3 3 o =
o 5 S o o a 5
= o) (¢) = m o
2 | 8|3 |38 |5 |=| 8
@ © - e » S
SHARED MESSAGE QUEUE

2

2 s ®

(<} ° o F] 3

= E ° 3 (<] S

8 g 5 S z (<}

a <} g c ® o

£ z <]] E =

7] (] = o o =

o o (=] -1 4 (7]

NOTESIN

BSMTPOUT

Figure 4: Channel /O Mapping
When a message is submitted to the Message Queue Server, the Message
Queue Server, in turn, submits it to the Preprocessor for any potential prepro-
cessing. This is done by creating a new entry in the Preprocessor database,

16 INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

MESSAGE QUEUE API

CHAPTER 1

ENVELOPE PREPROCESSING & DIRECTORY LOOKUP STAGE

Envelope
Preprocessing
& Directory
Lookup Stage

MQPreprDB.db. This new entry, which is indexed by a unique message iden-
tifier or qid, consists of source and destination channel data, message enve-
lope information and a reference to the file containing the RFC822 message.

Once the message is fetched by the Preprocessor (see Figure 5 on page 17),
the Preprocessor will carry out three different tasks: 1) Envelope prepro-
cesssing, 2) directory lookup, 3) calls to external modules (configurable). The
third task is further divided into two.

Input Channels

Preprocessor input queue
Envelope Pre-processing

Directory Lookup

v

Phase 1 (writes status information) Phase 2 (performs necessary actions)

Module 1
Anti-virus

Module 1
Anti-virus

Module 2
Anti-Spam

Module 2

Anti-Spam

Module n
Fliter Attachment

Module n
Fliter Attachment

Preprocessor

S h

Note: Preprocessor status to be passed to output channel queue processors

Figure 5: Tasks Performed by the Preprocessor

In these stages, the Preprocessor enumerates all the addresses in the MQ
envelope and performs directory lookup from the Internal LDAP database to
expand recipient addresses, determine output channels associated with the
address and resolve mail aliases. It then copies the resolved internal address
to the MQ envelope. This internal address can either be an IMAP/POP3
mailbox path, cc:Mail or Notes address or any channel.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 17

CHAPTER 1

MESSAGE QUEUE API

CALLING OF THE PREPROCESSOR PLUG-INS STAGE

Calling of the

Preprocessor

18

Plug-ins
Stage

After directory lookup-address expansion, the Preprocessor plug-ins (i.e.
anti-virus, anti-spam) are called to perform their respective functions on the
messages. Preprocessor plug-ins are implemented as either Windows DLL’s
or Linux shared libraries. Each module undergoes two phases. In the first
phase, it runs its routine. In phase 2, it performs the configured action on the
messages based on the results in phase 1.

For example, if the anti-virus module is installed and configured in the Pre-
processor, this module will undergo two phases. In phase 1, it runs routine,
scan messages for viruses and separates the messages which are virus
infected. In the phase 2, it performs the action (i.e. forward a message, delet-
ing of message or send notification to the recipient or postmaster) configured
by the system on the virus infected. When phase 1 or phase 2 is through the
Preprocessor executes the next module. Once finished, the Preprocessor
returns the control to the MQ server.

The Preprocessor plug-ins are configured in the IEMTA.INI (Windows) or
IEMS.CONF (Linux) configuration file. In configuring this file, it should be
remembered that DLLs are loaded only during run-time. Thus, to load the
Preprocessor plug-ins DLL in the Preprocessor, the LoadLibrary(), GetPro-
cAddress() and FreeLibrary() functions should be used and (for Windows),
the dlopen, disym and diclose functions should be used (for Linux). These
functions are located in the Preprocessor module.

The LoadLibrary () is used to load the DLLs dynamically during
run-time.

The GetProcAddress () is used to map the function address in the
required DLLs.

The FreeLibrary () is used to unload the DLL library.

The dlopen is used to load SO (Shared Object) during run-time.
The dlsym is used to map the function address in the required SO.
The dlclose is used to unload the SO library.

To simplify the process taken by the Preprocessor, each external module
located in the Preprocessor (i.e. Anti-virus, SpamArchive, SpamDelete, etc.)
is given a specific Channel Action Matrix. This Channel Action Matrix defines
all the possible input and output channel combinations where the messages
may flow. It also determines which Preprocessor plug-ins should be called for
messages flowing through an input-output channel combination.

For example, if the system administrator decides to run the anti-virus module
to scan messages from the SMTPD destined to the SMTPC, he will config-
ured the channel action matrix by selecting the proper channel for the mes-
sages. The Channel Action Matrix is implemented as file that stores the
relationship between channel trace and Preprocessor actions by maintaining
a channel trace for each message. It records the name of the input & output
channel where a particular message passed through. For example, a mes-
sage received by the SMTPD will have a channel trace equal to SMTPD.
Once the message is routed to SMTPC, the channel trace becomes
SMTPD:SMTPC.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

MESSAGE QUEUE API CHAPTER 1

CALLING OF THE PREPROCESSOR PLUG-INS STAGE

In configuring the channel action matrix (preproc.cfg) file. The format of the
configuration file is as follows:

<Channel_Trace>=<Uniqueldentifier>

e.g.

1. SMTPD:SMTPC= Anti-Virus
2. SMTPD:SMTPC= SpamDelete

The first example means any message received by the SMTPD destined to
SMTPC will undergo spam checks so Preprocessor will call the Anti-Spam
plug in for the messages that flow through these channel. The messages that
meet the criteria of Anti-spam will be deleted. The second example means
the Preprocessor should run the anti-spam and the filter attachment module
to process all messages flowing through SMTPD going to SMTPC (see Fig-
ure 6 on page 19).

Directory | Server Controls | MTA | SMTP | Distribution List | Message Store | License

MTA B .
Channel Action Matrix

Queue Status

Professional Enterprise Edition ;

Configuratian LoopDetection
Demain Forwardng [LOCAL | swTPC | BSMTPOUT | DL
Domain Aas LOCALOUT & = T =
Module List
_ [SMTPD I I= Ir I
Anti-virus Plug-in
BSMTPIN Ix I I Ix
Anti-Spam
. . [pLout [[= r [s
namassassin Plugin
. . WEBCLIENT [In r [N
oop Detection
Auto Insertion ‘TNEF ||- ‘I_ ‘l_ ||-

Attachment Filker

Update | Reset ﬂl

Figure 6: Channel Action Matrix

Note: Once the Preprocessor is done with a particular message, it
informs the Message Queue Server of the message's qid. The
Message Queue Server then looks up the destination channels
appropriate for the given qid in the Preprocessor database. Con-
sequently, a new entry corresponding to the message will be cre-
ated in the database of each such destination channel set by the
Preprocessor.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 19

CHAPTER 1 MESSAGE QUEUE API

CALLING OF THE PREPROCESSOR PLUG-INS STAGE

20 INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

CHAPTER 2
MQ API Class Definitions

Class cMQ | This class is used whenever a message will be submitted to or retrieved from
the queue or channel. This includes the operations supported by the API.

Class Declaration

class MQCLASSDECL cMQ {
int count;
bool initial;
char* appname;
void* inMQ;
void* outMQ;
void* myEnv;
cMessage* msg;
cEnvHeader from;
cEnvHeader to;
char* path;
bool bDelete;
unsigned long idx;

public:

cMQ();

~cMQ();

int OpenMQChannel(char* appname, char* Idap);
char* GetMsgDest(char* ext);

char* GetPathName(unsigned long id, char* ext);
cMessage* GetMsgEnv(unsigned long id);

int PutMsg(cMessage* msg, char* inchannel);
cMessage* GetMsg(char* outchannel);

int DelMsg();

int CloseMQChannel();

h
Methods Used

OpenMQChannel - opens a connection to an input queue in the MQ
Server and performs channel /O mapping.

PutMsg -submits the message into the specified input channel.

GetMsg -fetch the message into the output queue.

DelMsg - deletes the current message file in the Queue directory.

GetMsgDest -returns the full pathname where the message will be writ-
ten or saved.

GetPathName - returns the full pathname of the message.

GetMsgEnv - retrieves the envelope information of the message.

CloseMQChannel- closes the connection to the MQ Server.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 21

CHAPTER 2 MQ API CLAss DEFINITIONS

CLASS CMESSAGE

Class This class is used to access the list of user information for the recipient "to"
cMessage and the sender "from" envelope header. It also has access to the full path-
name where the messages are located.

Class Declaration

class MQCLASSDECL cMessage {
cEnvHeader* from;
cEnvHeader* to;
char* msgpath;

public:

cMessage();

~cMessage();

void setFrom(cEnvHeader* from);
cEnvHeader* getFrom();

void setTo(cEnvHeader* to);
cEnvHeader* getTo();

void setMsgpath(char* msgpath);
char* getMsgpath();

h

Methods Used

setFrom - sets values for the user information of the sender ("from")
envelope header..

getFrom - retrieves the values for the sender ("from") envelope header.

setTo - sets values for the user information of the recipient ("to") enve-
lope header

getTo - retrieves the user information of the recipient ("to") envelope
header.

setMsgpath - sets the full path where the message file is located.

getMsgpath - retrieves the exact location of the message file.

22 INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

MQ API CLAss DEFINITIONS CHAPTER 2

CLAss CENVHEADER

Class This class is used when a list of user information for the recipient TO: and the
cEnvHeader sender FROM: envelope header needs to be created.

Class Declaration

class MQCLASSDECL cEnvHeader{
cList <cUserInfo*>userlist;
cUserlnfo * tmp;

public:
cEnvHeader()
~cEnvHeader();
int add(cUserInfo* user);
void display();
int dell(char*key);
cUserInfo* get(char* key)
cUserlInfo *getFirst();
cUserInfo *getNext();

Methods Used

add - adds a new user to the list of envelope headers .

del - deletes a new user from the list of envelope headers.

delAll - deletes all user information in the list of envelope headers.
get - retrieves the user information.

getFirst - retrieves the first record or user information in the list.
getNext - retrieves the next record or user information in the list.
getName - retrieves the name of the user .

getLan_addr - retrieves the email address of the user.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 23

CHAPTER 2 MQ API CLAss DEFINITIONS

CLASss CUSERINFO

Class This class is used for accessing user record which stores username and
cUserinfo email address.

Class Declaration

class MQCLASSDECL cUserlnfo {
char* name;
char* lan_addr;

public:

cUserlInfo();

~cUserlnfo();

void setName(char* name);
char* getName();

int setLan_addr(char* lan_addr);
char* getLan_addr();

Methods Used

setName - sets the name of the user.

getName - retrieves the user's name.

setLan_addr - sets the email address of the user.
getLan_addr - retrieves the email address of the user.

24 INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

MQ API CLASS DEFINITIONS CHAPTER 2

CLASS CCHANNEL

Class This class is used for adding and deleting channel in the MQAPI.
cChannel

Class Declaration

class cChannel {
char *iniFileName;
char *szQueueFile;
char *szTmpFile;
char szLdapHost[SZ HOST];

public:

cChannel();

~cChannel();

bool IsExist(char *channel);

int Add(char *channel, char *application, char *type, char compatibil-
ity);

int Del(char *channel);

Methods Used

IsExist - checks if the channel exist in the configuration file.
Add - adds channel entry in the file.
Del -deletes channel entry in the file.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 25

CHAPTER 2 MQ API CLAss DEFINITIONS

CLASs CCHANNEL

26 INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

CHAPTER 3

cMQ::
OpenMQChannel

cMQ::PutMsg

MQ API Function Reference

Description:
Opens a connection to the MQ Server. It also performs channel I/O mapping.

Syntax:

int OpenMQChannel (char*appname, char*ldap);

Parameter(s):
appname -name of the application accessing the message queue.
Idap -the location of Directory Server machine.

Returns:

Returns 0 if no errors occured. Otherwise, returns a non-zero value. (Please
refer to the MQAPI Error Codes.)

Note: Foran application to access the Message Queue, it must first open
a connection to the MQ Server. Hence, an application must first
call OpenMQChannel before it can submit or retrieve messages to
or from the Message Queue.

Description:
Inserts a message into the specified input channel.

Syntax:
int PutMsg(cMessage*msg, char* inchannel);

Parameter(s):
msg - Actual message file to be stored in the queue. This includes the
user information for the recipient ("to") and the sender ("from")
envelope header, and the full path where the message is
located
inchannel - Name of the Input queue (e.g. LOCALOUT, CCOUT)

Returns:
Returns 0 if no errors occurred. Otherwise, a non-zero value (please refer to
the MQ API Error Codes).

Note: This function should be invoked after the channel where the mes-
sage will be inserted have been successfully opened.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 27

CHAPTER 3

MQ API FUNCTION REFERENCE

cMQ:: GETMSGPATH

28

cMQ::
GetMsgPath

cMQ::GetMsg

cMQ::DelMsg

Description:
Returns the whole path name where the message will be written.

Syntax:
const char *GetMsgPath (char*ext);

Parameter(s):
ext - specifies the extension name of the file.

Returns:
Returns the whole path name where the message will be written.

Note: Called after PutMsg.

Description:
Retrieves a message from an output channel.

Syntax:
cMessage*GetMsg (char* outchannel);
Parameter(s):

outchannel - specifies the output channel.
Returns:

Returns the retrieved contents of the from and to envelope headers and the
full pathname where the message is located.

Note: Should be called only after a channel has been successfully opened.

Description:
Deletes the message file in the Queue directory.

Syntax:
int DelMsg ();

Parameter(s):
none

Returns:
Returns zero if message file was successfully deleted otherwise a nonzero
value is returned (please refer to the MQ API Error Codes).

Note: Should be called only after GetMsg() method has been successfully
called.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

MQ API FUNCTION REFERENCE CHAPTER 3

cMQ:: CLoSEMQCHANNEL

cMQ::
CloseMQChannel

cChannel::
IsExist

cChannel::
Add

Description:
Closes the connection to the Message Queue Server.

Syntax:
int CloseMQChannel();

Parameter(s):
none.

Returns:
Returns 0 if no error and a non-zero if error occurs (please refer to the MQ
API Error Codes).

Note: Should only be called if there exist an open channel.

Description:
Checks if the channel exist in the file.

Syntax:
bool IsExist(char *channel);

Parameter(s):
channel - specifies the input/output channel.

Returns:
Returns true if the channel is already exist, if not false.

Descripton:
Add a channel entry in the file.

Syntax:
int Add(char *channel, char * application, char *type, char compatibility);
Parameter(s):

channel - specifies the input/output channel.

application - specifies the application name or process name.

type - specifies channel type (e.g. "in" or "out")

compatibility - specifies compatibility mode. The value of compatibility is
'c' if compatible and NULL otherwise.

Returns:
Returns 0 if the successful and non-zero if not (please refer to the MQ API
Error Codes).

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 29

CHAPTER 3

MQ API FUNCTION REFERENCE

CCHANNEL:: DEL

cChannel::
Del

cMQ::
GetPathName

cMQ::
GetMsgEnv

30

Description:
Deletes channel entry in the file.

Syntax:
int Del(char *channel);

Parameter(s):
channel - specifies the input/output channel.

Returns:
Returns 0 if the channel is deleted, if not a non-zero value is returned.

Description:
Returns the full pathname of the message

Syntax:
char*GetPathName(unsigned long id, char* ext)

Parameter(s):
id - unique message identification.
ext - specifies the extension name of the file.

Return(s):
Returns the full pathname of the message.

Description:
Retrieves the envelope information of the message.

Syntax:
cMessage* GetMsgEnv(unsigned long id)

Parameter(s):
id - unique message identification.

Return(s):
Returns the envelope information of the message.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

MQ API FUNCTION REFERENCE CHAPTER 3

MQ APl PROGRAM FLow

MQ API
Program Flow

Create an instance of the class cMQ to enable basic queue opera-
tions like submitting and fetching messages.

Syntax:
cMQ 3a;

Call the OpenMQChannel method. This will open a connection to a
specific channel in the MQ Server.

a.0penMQChannel(appName, Idap)
Put or fetch a message from the Message Queue.

To submit:
cMessage message; /*set message envelope and contents*/
a.PutMsg(&message, "localout");

To fetch a message:

Call the method GetMsg(), which returns the cMessage object. To fetch
again the next message just invoke once more the GetMsg(); After call-
ing GetMsg, DelMsg() method is invoked to delete the file in the Queue
directory.

cMessage*msg = a.GetMsg("local");
a.DelMsg();

Lastly, when all the queue operations are through, invoke the CloseM-
QChannel to close the connection to the MQ Server.

a.CloseMQChannel()

Note: You may create and add your own queue in IEMS. All you need to

do is update the queue.cfg file and add Input/Output channels
manually.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 31

CHAPTER 3 MQ API FUNCTION REFERENCE

MQ API PROGRAM FLow

32 INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

CHAPTER 4

Prerequisites

MQ API
Toolkit

How To Use The MQ API

This section aims to help you further understand how you can use the MQAPI
to develop third party applications for IEMS. It contains information on what
precisely should be done to build an application (e.g. channel processor) for
IEMS. It demonstrates how to hook the created application to IEMS and tie
the program to the IEMS general administration interface.

System Requirements

Hardware
Pentium 200 or higher model microprocessor
64 MB RAM
200MB hard disk space for applications
1GB hard disk space for message store

Software (Linux)
Linux OS (Redhat 6.2 - 80, Caldera OpenLinux, Mandrake 8.2 - 9.1)
IEMS 7 for Linux
Compiler: gcc 2.91.66 or above

Software (Windows)
Windows NT/ 2000/XP
IEMS 7 for Windows
Compiler: Visual C++ 5.0 or above

The MQAPI Toolkit contains the MQAPI files. It is separately packaged, but
freely available. It is important that this toolkit be successfully installed when
creating a new application for IEMS. To download the most recent version
of the toolkit, please see:

http.//www.ima.com/iems/api.htm|

Given below is the directory structure of the MQAPI files.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 33

CHAPTER 4

How To Use THE MQ API

BUILDING APPLICATIONS USING MQAPI

Building
Applications
Using MQAPI

34

For WINDOWS & Linux Directories Definition:

Table 1:
Windows Linux
toolkit\imqapi\ toolkitimqgapi\ All message queue header
include include files (*.h)
toolkit\imgapi\lib toolkit\imgapi\lib All libraries

toolkit\sample toolkit\sample Source codes for sample

application programs

toolkit\sam- toolkit\sample\debug | Sample application object

ple\debug codes in debug mode.

toolkit\sample\ toolkit\sam- Sample application object

release ple\release codes in release mode.
Header files

In using the MQAPI, the first consideration is the inclusion of the MQAPI
header files in the application source code. These files define the basic
structures, function prototypes, and return codes needed to use the MQAPI.

mqgapi.h
mqapi.h (for Windows & Linux) is a file to be included in C++ programs to

provide definitions for the Message Queue Interface to IEMS. To include the
directory path, use the /I for (Windows) and -I for (Linux).

Note: See sample program in the Appendix A

API_MQ.lib or libmg.so

API_MQ.lib (for Windows) or libmq.so (for Linux) is the library that contains
the definitions for the IEMS public entry points to the Message Queue.

To include the library file in your application, do these steps:
For Windows:

1. Using Visual C++, go to the Project Setting of the application (see Figure
7 on page 35).

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

How To Use THE MQ API CHAPTER 4

ADDING PREPROCESSOR PLUG-INS IN THE CONFIGURATION FILE

Adding
Preprocessor
Plug-ins In
The
Configuration
File

Project Settings ﬂm
d General | Debug I C/C++ Link | Hesourc(EE

Categary: I Irput j Bieset |

ObjectAibramy modules:
I!&F’I_MQ.Iih kemel32.lb user32lib gdi32 b winzpool b co

zample.cpp

Ignore libraries: ™ lgnore all default braries

Force spmbol references:

Additional library path:
| it debug
Project Options:

kemel32.lib uzer32.lib gdi32 b winzpool b comdlg32.lib =
advapia2 lib shell32 lib ole32 lib oleaut32 lib uuid lib

odbc32 lib odboop32.lib API_ME lib Anologo E|
ak. I Cancel I

Figure 7: The Project Setting Dialog box

2. On the Project Setting dialog, select Link Tab.

3. Inthe Category option, select Input.

4. Go to the Object/library module textbox then add the library API_MQ.lib.
5. Inthe Additional/library path textbox, add the message queue library path.
6 Click OK button.

For Linux:
1. In the Linux makefile, add the library path using -L option.
2. Then inclide the library using -l option in the application program.

The Preprocessor uses the prototype defined below to load the DLL Plug-ins:

DWORD Func(enum PHASE phase, QID gid, MQContext *mq, char
*proc_file, char *szDestChannel)

The function uses the “phase number” (phase 1 or phase 2), “the QID of the
message”, “the Message queue context” and “the name of the process file”
as input parameters. The process file is assigned by the preprocessor mod-

ule and it’'s extension is “.pXX”, where “XX” refers to a number from 00 to 99.

During phase 1, the external function writes writes any status information into
the process file and during phase 2, the actions on the message are per-
formed based on the contents of the process file.

The Preprocessor plug-ins are configured in the IEMTAL.INI (Windows) or
IEMS.CONF (Linux). For your third party application to work within IEMS, the
configuration file IEMTA.INI (Windows) or IEMS.CONF (Linux) must be mod-
ified to enable IEMS to recognize the newly added application. To modify, do
the following:

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 35

CHAPTER 4 How To Use THE MQ API
ADDING PREPROCESSOR PLUG-INS IN THE CONFIGURATION FILE

1. Transfer the DLL (for Windows) or SO (Shared Objects for Linux) files to
the Message Queue Directory.

2. Open the Configuration file.

3. Locate the Preprocessor label. See example below:

e.g.

[PreProcessor]
NumberOfModules =<N>

Where:
N can be 1 to 100

Note: The maximum number of external modules that can be added to the
Preprocessor is limited to 100 modules.

After the NumberOfModules line comes the lines stating the configuration of
the defined Preprocessor plug-ins. Each module is configured according to
this syntax:

Module<N>=<DLL Name>,<FunctionName>,<Uniqueldentifier>
where:
<N> is the plug-in or module identification number
<DLL Name> is the name of the DLL
<FunctionName> is the DLL function entry point
<Uniqueldentifier> is the DLL unique identifier

e.g.

[PreProcessor]

NumberOfModules =2

ModuleO=anti_v.dll, anti_virus, Anti-Virus
Module1=anti_s.dll,anti_spam, SpamDelete

The above example, states the configuration of the anti-virus and anti-spam
preprocessor modules.

To add another external module, first copy the DLLs (for Windows) or SO
(Shared Objects for Linux) in the message queue directory. Type the module
to be added (e.g. Module 2=Filter.dll,FilterCheck,FilterAt-
tachment)in the configuration file. Then update the existing total number
external modules (e.g. NumberOfModules =3)in the system.

e.g.

[PreProcessor]

NumberOfModules =3

ModuleO=anti_v.dll, anti_virus, Anti-Virus
Module1=anti_s.dll,anti_spam, SpamDelete
Module2=Filter.dll,FilterCheck,FilterAttachment

36 INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

How To Use THE MQ API CHAPTER 4

CREATING THE NEW CHANNEL FOR YOUR APPLICATION

Creating The In order to create/add a new channel (input-output) for the created applica-
New Channel tionand reflect the addition of these changes to the IEMS general adminis-
For Your tration interface, the programmer must perform the following:

Application Create a queue for the application
1. Load the IEMS LDAP application.

2. Create an instance of the object class channel.
e.g. cChannel c;

3. Add a channel in "queue.cfg" file by calling the method
Add(channel name, application name, type, mode).
This supports the registering of the application to LDAP.
e.g c.Add ("my", "smtpd", "in", NULL);

M International Messaging Associates Home News Updates Support About Version 7

Directory | Server Controls | MTA | SMTP | Distribution List | Message Store | License

MTA . .
Channel Action Matrix

Queue Status

Configuration LoopDetection
Pomain Forwarding. | | " LOCAL | SMTPC | BSWTPOUT | DL
Domain Alias |LOCALOUT ‘l_ ||_ ||_ ‘l_
Module List
[sMTPD I= I= I I=
Anti-virus Plug-in
[BSMTPIN I [r [m I
Anti-Spam
. [pLouT I= I= I I=
parmassassin Plugin
[WEBCLIENT [= Is [[
Loop Detection
Auto Insertion |TNEF ‘I— ||— ||_ ‘I—

Attachment Filter

Update | Reset ﬂl

Figure 8: The Channel Action Matrix

Note: You may also delete a channel by calling the method Del(channel
name). This supports the unregistering of an application to LDAP.
e.g. c.Del("my");

After adding or deleting a channel, the file “queue.cfg” updates automatically.
This file is located at Program files/IMA/Internet Exchange Mes-
saging Server 6.x if IEMS is installed on Windows or in /opt/iems
when IEMS is installed on Linux.

Conclusion

By incorporating an MQAPI, IEMS attests its open architecture and ensures
its users interoperability and extensibility solutions for the future. It also pre-
sents an excellent opportunity for third party developers to create custom
applications that would provide additional functionality to IEMS with flexibility.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 37

CHAPTER 4 How To Use THE MQ API
CREATING THE NEW CHANNEL FOR YOUR APPLICATION

38 INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

CHAPTER 5

Authentication
| Password
Management

IEMS Client API

This section describes the IEMS Client APl and how it can be used as the
basis for developing messaging enabled applications. It provides simple to
use C++ and PHP interfaces on top of the various IEMS subsystems, includ-
ing the Message Store, Directory Server, and MTA (see Figure 9 below). The
Client APl is a wrapper to the Message Store API, Message Queue API, and
other added components (address book, signature, password, and session
control).

IEMS Client PHP Extension Library

IEMS Client C++ API Library

Message Directory Message
Store e Transfer
Subsystem Agent

Figure 9: IEMS Client API
Tools provided within the Client API that cover the following functional areas:

* Authentication and Password Management
* Message Store Access
* Message Submission

Before any actions can be taken with respect to message store access, users
first must identify themselves to the messaging system. This is done through
loggin in to IEMS (Authenticate function). Additional functions are provided
to logout from the system (Logout) and for changing user passwords
(UpdatePassword).

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 39

CHAPTER 5

IEMS CLIENT API

MESSAGE STORE ACCESS

Message
Store Access

40

The Message Store Access routines provide a full set of functions in the fol-
lowing areas:

» Folder Access
* Message Access
* Message Header and Content Access

Folder Access

Folder Access routines allow the caller to create, rename, or delete folders
for a given message store user. When folders names are made up of non-
ASCII or double byte characters (e.g. Chinese, Japanese, and others), folder
names are encoded in UTF-8 format. The Client API engine encodes the
folder name to be modified UTF-7 format at stated in section 5.1.3 of RFC-
2060. For Windows operating systems, the on-disk folder name is modified
such that the hexadecimal portion of the UTF-7 encoded name is appended.

Folder access routines also provide methods for enumerating each folder
and its attributes for a message store user. Folder Access routines include
the following:

» CreateFolder

* RenameFolder

* DeleteFolder

» ReadFolderAttributes
» GetAllFoldernames
» FreeFoldernames

Message Access

The Message Access routines are used for accessing each message, its
attributes, and its contents in the message store. It provides methods meth-
ods for the copying, moving, and deleting of messages from the message
store, and methods for changing message attributes. Message Access rou-
tines include the following:

» GetUIDs

* GetUIDsWithSearchKey

» GetPrevNextUID

* GetPrevNextUIDWithSearchKey
» GetMessagelnfo

» CopyMessage

* MoveMessage

* DeleteMessage

* MarkMessageAsRead

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

IEMS CLIENT API CHAPTER 5

MESSAGE STORE ACCESS

Message Header and Content Access

Messages received by IEMS are stored in their native Internet format, includ-
ing any and all MIME structuring. The Message Header and Content Access
routines provide the programmer with tools for the analysis and retrieval of
such messages, and any attchments.

In addition to simple unstructured messages (non-MIME), there are 3 basic
types of structured messages that are commonly encountered:

» Single Body MIME
+ Multi-Part MIME
* Message / RFC-822

Single Body MIME
Single body MIME messages are the simplest structured messages. They
are just text messages, with a character set identifier.

Mime-Version:1.0 -
Content-Type:text/plain;charset=us-ascii

Hi Mary,
How are you doing?

-- John
|

Figure 10: Single Body MIME

Multi-Part MIME

Multi-part MIME messages are used when trying to send multiple objects in
a single message. Forinstance, in the example below (see Figure 11), a text
message block and a image are included. The blocks are separated by the
boundary string “abc”. Each block is essentially a separate MIME object.
There can be an arbitrary number of attachments to a given message.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 41

CHAPTER 5

IEMS CLIENT API

MESSAGE STORE ACCESS

42

Mime-Version:1.0 -
Content-Type:multipart/mixed;boundary="abc”

--abc

Content-Type:text/plain

Hello!

--abc

Content-Type:image/jpeg;name="dinner.jpg”
Content-Transfer-Encoding:base64

ASDASDBCJKAJHKLJWEHKASJKDHASDKJH
AJHKWJIH123123AUENCNHFHAHWEWEWEH

--abc--

Figure 11: Multi-Part MIME

Message / RFC-822

The Message / RFC-822 content type is used when attaching or including
another entire mail message inside a message. The primary MME headers
simply identify the message as a MIME message, and that the contents are
to be treated as a separate message. This format is typically used when for-
warding messages with no added comments or content.

From:mary@company.com
To:john@company.com
Mime-Version:1.0
Subject:Forward message...
Content-Type:message/rfc-822

From:peter@company.com
To:jack@company.com
Mime-Version:1.0
Subject:Hi!
Content-Type:text/html

<HTML>
<BODY>
<P>Hil</P>
</BODY>
</HTML>

Figure 12: Message / RFC-822

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

IEMS CLIENT API

CHAPTER 5

MESSAGE SUBMISSION

Message
Submission

Sample
Applications

ComposeMail is used to build and submit messages to the IEMS MTA. It can
be used to build simple text only messages, or multipart MIME messages.
While this routine is used for the composition and submission of messages
to the MTA, it is important to note that the uploading of messages from a cli-
ient workstation to the IEMS server is outside the scope of this function, and
must be locally implimented for situations requiring file attachment.

Web Mail Client

The IEMSCPHP toolkit includes a Web Mail Client application to demon-
strates the usage of the IEMSCPHP extension library. This WMC application
serves as a guideline on how to use various iemsc_ functions to implement
a web mail client interface for IEMS. You can add site banners, using differ-
ent style sheet, adding images or so on to enrich the user interface. Or, if you
do not like the layout at all, you can design your own web mail client interface
by using all the available functions in the IEMSCPHP extension library.

login.htm
This provides the web mail login page to the user.

menu.htm
This provides the menu bar on the web mail client interface.

vfolder.htm
Provides a summary view of a folder with pagination support. You can copy,
move or delete messages in a folder. This page uses:

* iemsc_authenticate

+ iemsc_readfolderattributes
* iemsc_getuids

» iemsc_getmessagesinfo
 iemsc_utf7_to_decimal

* iemsc_isread

» iemsc_readallfoldernames

viewmsg.htm

Provides a view to display individual message content in a folder and pro-
vides links to reply or forward the message. It also provides navigation links
to read the previous or next message available in a folder. Moreover, it dem-
onstrates how to make use of the result from iemsc_getmessagestructure to
display individual MIME body part on the page, or display a link to download
a MIME body part as attachment. This page uses:

* iemsc_markmessageasread
* iemsc_getmessagestructure
» iemsc_getmessageinfo

* iemsc_getprevnextuid

* iemsc_getmessagebody

* iemsc_getembeddedheaders

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 43

CHAPTER 5

IEMS CLIENT API

SAMPLE APPLICATIONS

44

viewextra.htm
Provides a view to display the full message headers and complete message
source. This page uses:

* iemsc_getmessageheader
* iemsc_getmessagesource

getbody.htm
Provides a CGl interface to download an email attachment. This page uses:

* iemsc_getmessagebody

folder.htm
Provides a view to display all folders and their attributes. This pages uses:

» iemsc_renamefolder

» iemsc_deletefolder

» iemsc_createfolder

* iemsc_readallfoldernames

» iemsc_readfolderattributes_with_size
+ iemsc_utf7_to_decimal
 iemsc_isspecialfolder

renfolder.htm
Provides a form to ask user to enter a new folder name for renaming. This
page uses:

 iemsc_utf7_to_decimal

newmail.htm
Provides a form for a user to compose, reply and forward an email message
and upload file attachments. This page uses:

* iemsc_getmessageinfo

* iemsc_getmessagestructure
* iemsc_getmessagesource
* iemsc_getmessagebody

sendmail.htm
This page submits the composing mail message to MQ. This page uses:

* iemsc_composemail

search.htm
Provides a message search form and displays the search result. This page
uses:

» iemsc_readallfoldernames
* iemsc_copymessage

* iemsc_deletemessage

* iemsc_movemessage

* iemsc_searchuids

* iemsc_getmessagesinfo
 iemsc_utf7_to_decimal

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

IEMS CLIENT API CHAPTER 5
SAMPLE APPLICATIONS

* iemsc_isread

viewsearchmsg.htm
Provides a view to display the message content that matches the search cri-
teria. This page uses:

* iemsc_markmessageasread
* iemsc_getmessagestructure
* iemsc_getmessageinfo

* iemsc_searchprevnextuid

* iemsc_getmessagebody

+ iemsc_getembeddedheaders

passwd.htm
Provides a form to change the user password. This page uses:

* iemsc_updatepassword

wmc.php

This is the main PHP page that all CGl commands used by the Web Mail Cli-
ent use. It uses iemsc_authenticate to verify the username, hashedpass-
word and homedirectory before passing the control to any of the above HTML
pages. It demonstrates how to use $HTTP_SESSION_VARS to store the
'username’, 'password’' and 'homedir information on the web server. This
page uses:

* iemsc_authenticate

+ iemsc_copymessage
* iemsc_deletemessage
* iemsc_movemessage
 iemsc_logout

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 45

CHAPTER 5 IEMS CLIENT API

SAMPLE APPLICATIONS

46 INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

CHAPTER 6

Installation

Client APl C++ Interface

The IEMS Client C++ APl is an open C++ API interface for 3rd party devel-
opers, used to write messaging applications on top of the IEMS messaging
server. It encapsulates most of the functional details provided by the different
IEMS subsystems and provides a simplified APl interface for developers. The
functions in the Client C++ API are specially designed for writing Web Mail
Client and related applications for IEMS.

The IEMS Client C++ API provides functions that cover three major functional
areas:

* Authentication and Password Management
* Message Store Access
* Message Submission

Descriptions of each of these functional areas can be found in Chapter 5.

The IEMS Client C++ API supports both Win32 and Linux operating systems.
Microsoft Visual C++ 5.0 is used for Win32 operating systems and GCC 2.96
is used for Linux based systems. Itis recommended to use the same tool set
when compiling and linking your applications.

Before you can build IEMS enabled applications, you need to install and con-
figure the IEMS Client API with your development environment. The IEMS
API’'s can be found on your Version 7 installation CD, or can be downloaded
from the IMA web site. For more details on how to download, see the IEMS
API page at http://www.ima.com/iems/api.html. Once you have obtain the
Client API distribution file, you can installed the Client C++ API library by fol-
lowing these procedures:

Microsoft Windows (Win32)

To install the Client API under Windows, perform the following steps:

1. Locate and unzip the iemsctoolkit.zip to your local harddisk. For
example c:\iemsctoolkit

2. Copy c:\iemsctoolkit\lib\iemscapi.dll to your IEMS installation direc-
tory (c:\iems is the default location).

3. Make sure your IEMS installation directory is listed in the system
PATH environment variable

4. Create a new project under VC++ 5.0 IDE

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 47

CHAPTER 6

CLIENT API C++ INTERFACE

THE IEMSC CLASsS

The IEMSC
Class

48

5. In your project source code, include the header file #include "iem-
scapi.h" and add c:\iemsctoolkit\include in your INCLUDE path

6. Add c:\iemsctoolkit\lib\iemscapi.lib to your project library path.
7. Make sure you are using the -MD flag in your project.

Linux
To install the Client API under Linux, perform the following steps:

1. Locate and untar the iemsctoolkit.tar file to your local harddisk. For
example:

mkdir /opt/iems/iemsctoolkit
cd /opt/iems/iemsctoolkit
tar xvf /tmp/iemsctoolkit.tar

N

. Copy /opt/iems/iemsctoolkit/lib/libiemscapi.so to the IEMS library direc-
tory, ie. /opt/iems/lib

3. Run Idconfig -v to update your system library cache

4. In your project source code, include the header file #include "iem-
scapi.h" and add /opt/iems/iemsctoolkit/include in your INCLUDE path

5. Make sure you have defined -D_REENTRANT in your project makefile

(o))

. Link your project with -L/opt/iems/lib -liemscapi -Ipthread in your project
makefile

~

. Make sure you program is setuid / setgid to iems. Otherwise, your appli-
cation will not have read/write access to IEMS storage area.

Software License

The IEMS Client C++ API library requires a proper IEMS message store
license to operate. Please obtain the software license from www.ima.com
and install the license properly before installing the API toolkit. Otherwise, the
IEMS Client C++ library cannot operate properly.

The IEMSC Class forms the foundation of the IEMSC C++ API. This class
defines the methods used within the toolkit. Most methods return a
IEMSC_ERR return code upon sucessful operation. All return codes are 32-
bit unsigned long integers. The other return codes can be found in Appendix
C.

Before any methods provided by the IEMSC class can be used, an iemsc

object must be created. The Authenticate must be the first method called in
order to create the proper user context.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

CLIENT API C++ INTERFACE CHAPTER 6
THE IEMSC CLASS

This document only lists the exported public member functions of the IEMSC
C++ class. The actual IEMSC class definition in the iemscapi.h file also
includes the private methods and class emember variables that are not in the
scope of this document.

The following defines the iemsc C++ class:

class iemsc
{
public:
enum eSortKey {DEFAULT KEY, BY FROM, BY TO, BY DATE,
BY SUBJECT, BY SIZE, BY UID};
enum eSearchKey {NO KEY, FROM_KEY, TO KEY, DATE_KEY, SUBJECT KEY};
enum eSortDirection {DEFAULTiDIRECTION, ASCENDING, DESCENDING};
IEMSC _DECL iemsc() ;
IEMSC_DECL ~iemsc () ;

// Authentication methods
public:
/*
* The API application must call Authenticate method before
* calling other API in the IEMSC class
*/
IEMSC_DECL IEMSC_ERR Authenticate(const char *szUsername,
const char *szPassword,
const char *szCharset,
const char *szLocale,
const enum eSortDirection eSortDirection,
const enum eSortKey eSortKey,
char szHashPasswordl[],
bool bInit
) ;

IEMSC_DECL IEMSC_ERR Authenticate (const char *szUsername,
const char *szPassword,
const char *szHomedir,
const char *szCharset,
const char *szLocale,
const enum eSortDirection eSortDirection,
const enum eSortKey eSortKey
) ;

IEMSC_DECL IEMSC_ERR Logout (const char *szUsername,

const char *szHashPassword) ;

// Password management
IEMSC_DECL IEMSC_ERR UpdatePassword(const char *szUsername,
const char *szOldpassword,
const char *szNewpassword) ;

// Folder management
IEMSC_DECL IEMSC_ERR CreateFolder (const char *szFoldername) ;

IEMSC_DECL IEMSC ERR RenameFolder (const char *szOldFoldername,
const char *szNewFoldername) ;

IEMSC_DECL IEMSC_ERR DeleteFolder (const char *szFoldername) ;

IEMSC_DECL IEMSC_ERR ReadFolderAttributes (

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 49

CHAPTER 6 CLIENT API C++ INTERFACE
THE IEMSC CLASS

const char *szFoldername,
unsigned long *ulNmsgs,
unsigned long *ulRecent,
unsigned long *ulUnseen,
unsigned long *ulUidnext,
unsigned long *ulSize

)

IEMSC_DECL IEMSC_ERR GetAllFoldernames (char ***pFolderNames) ;

IEMSC _DECL void FreeFoldernames (char **pFolderNames) ;

// Message access
IEMSC_DECL IEMSC_ERR GetUIDs (const char *szFolderName,
const enum eSortDirection eSortDirection,
const enum eSortKey eSortKey,
unsigned long ** pUIDs,
unsigned long pagesize=0,
unsigned long pagenumber=0) ;

IEMSC DECL IEMSC ERR GetUIDsWithSearchKey (
const char *szFolderName,
const enum eSortDirection eSortDirection,
const enum eSortKey eSortKey,
const enum eSearchKey eSearchKey,
const char *szSearchValue,
const time t tBefore,
const time t tAfter,
unsigned long ** pUIDs,
unsigned long *ulHit,
unsigned long pagesize=0,
unsigned long pagenumber=0) ;

IEMSC_DECL IEMSC ERR GetPrevNextUID (const char *szFolderName,
const enum eSortDirection eSortDirection,
const enum eSortKey eSortKey,
unsigned long ulUid,
unsigned long ulPagesize,
unsigned long *ulPrevUid,
unsigned long *ulNextUid,
unsigned long *ulPagenumber) ;

IEMSC_DECL IEMSC_ERR GetPrevNextUIDWithSearchKey (
const char *szFolderName,
const enum eSortDirection eSortDirection,
const enum eSortKey eSortKey,
const enum eSearchKey eSearchKey,
const char *szSearchvValue,
const time t tBefore,
const time t tAfter,
unsigned long ulUid,
unsigned long ulPagesize,
unsigned long *ulPrevUid,
unsigned long *ulNextUid,
unsigned long *ulPagenumber) ;

IEMSC_DECL IEMSC_ERR GetMessageInfo (const char *szFolderName,
unsigned long ulUid,
char **pFrom,
char **pTo,
char **pCc,
char **pSubject,
char **pDate,
unsigned long &ulSize,
unsigned long &ulFlags) ;

50 INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

CLIENT API C++ INTERFACE

CHAPTER 6

THE IEMSC CLASsS

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

IEMSC DECL IEMSC ERR

IEMSC_DECL IEMSC_ERR

IEMSC DECL IEMSC_ERR

IEMSC DECL

IEMSC_ERR

IEMSC DECL IEMSC_ERR

IEMSC DECL IEMSC ERR

IEMSC DECL IEMSC ERR

IEMSC DECL

IEMSC_ERR

IEMSC _DECL IEMSC_ERR

CopyMessage (const char *szSourceFolder,
const unsigned long ulUid,
const char *szDestinationFolder) ;

MoveMessage (const char *szSourceFolder,
const unsigned long ulUid,
const char *szDestinationFolder) ;

DeleteMessage (const char *szFolderName,
const unsigned long ulUid) ;

MarkMessageAsRead (const char *szFolderName,
const unsigned long ulUid) ;

GetMimeStructure (const char *szFolderName,
const unsigned long ulUid,
struct MIMEBODY ** pBody) ;

GetMimeBody (const char *szFolderName,
unsigned long ulUid,

int iPartNumber,

char **pDecodeStream,

unsigned long &ulLength) ;

GetMessageHeader (const char *szFolderName,
unsigned long ulUid,

char **pHeaderStream,

unsigned long &ulHeaderSize) ;

GetMessageSource (const char *szFolderName,
unsigned long ulUid,

char **pMessageSource,

unsigned long &ulMessageSize) ;

GetEmbeddedHeaders (const char *szFolderName,
unsigned long ulUid,

int iPartNumber,

char **pFrom,

char **pTo,

char **pCc,

**pSubject,

**pDate) ;

char
char

// Message creation (submit to MQ)

IEMSC DECL IEMSC ERR

ComposeMail (const char *szCharset,
const char *szToAddress,

const char *szCcAddress,

const char *szBccAddress,
*szSubject,

char *szMailbody,

bool bHTMLbody,

struct attachment *attach,
int nAttachment,

bool bSaveToDraft,

bool bSaveToOutbox) ;

const char
const
const
const
const
const

const

// Supporting functions

IEMSC_DECL void FreeString

IEMSC_DECL void FreeBuffer

(char *pString) ;

(void *pBuffer) ;

IEMSC_DECL void FreeMimeBody (struct MIMEBODY *mimebody) ;

51

CHAPTER 6

CLIENT API C++ INTERFACE

AUTHENTICATION / PASSWORD MANAGEMENT

Authentication
| Password
Management

52

IEMSC DECL bool IsSpecialFolder (char *szFoldername) ;
IEMSC DECL char *utf7 decimal (char *utf7);

IEMSC_DECL char *GetHomeDirectory (void) { return m_szHomedir; };

}i

Authenticate (Form 1)
Syntax: IEMSC_DECL IEMSC_ERR Authenticate

Parameters:
const char *szUsername,
const char *szPassword,
const char *szCharset,
const char *szlLocale,
const enum eSortDirection eSortDirection,
const enum eSortKey eSortKey,
char szHashPassword][],
bool binit

Returns: IEMSC_NO_ERR on success.

Description:

This is the first method to call before calling other methods in the IEMSC
class (with the exception of UpdatePassword method). When binit is set to
true, you need to pass the clear text password in the szPassword field. The
API will compute a per-session-hashed password and return it in the szHash-
Password field. The szHashPassword size must be at least
HASH _PASSWORD LENGTH large (see iemscpai.h). When binit is set to
false, the per-session-hashed password needs to be passed in the szPass-
word field and the szHashPassword field is ignored. The function verifies the
user name and password and initializes the user credential in the IEMS sys-
tem. If the user name and / or password is not correct, all succeeding call to
other methods in IEMSC class will always return
IEMSC_NOT_AUTHENTICATED.

The szCharset and szLocale fields are used when submitting message into
the MQ subsystem. If you specify an EMPTY STRING, the system default
will be used.

The eSortDirection and eSortKey controls how the IEMS UIDs are being
returned by the GetUIDs and GetUIDsWithSearchKey methods. You can
specify DEFAULT_DIRECTION and DEFAULT_KEY respectively to use the
system defaults, which are set to DESCENDING and BY_UID.

Note: For a CGl type application, you can use binit=true to first verify the
clear text password entered by the user. Then the per-session-
hashed password can be used to re-authenticate the user CGl ses-
sion and prevent the CGI from passing the clear text password
around.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

CLIENT API C++ INTERFACE CHAPTER 6

AUTHENTICATION / PASSWORD MANAGEMENT

Authenticate (Form 2)
Syntax: IEMSC_DECL IEMSC_ERR Authenticate

Parameters:
const char *szUsername,
const char *szPassword,
const char *szHomedir,
const char *szCharset,
const char *szLocale,
const enum eSortDirection eSortDirection,
const enum eSortKey eSortKey

Returns: IEMSC_NO_ERR on success.

Description:

This is a variant of the above Authenicate method with binit=false. The first
Authenicate method always performs a LDAP query to the server to retrieve
the location of the user's HOME directory. To achieve better performance,
your application can pass the user HOME directoy in the szHomedir field to
re-authenticate the user name and password.

Logout
Syntax: IEMSC_DECL IEMSC_ERR Logout

Parameters:
const char *szUsername,
const char *szHashPassword

Returns: IEMSC_NO_ERR on success.

Description:

Call this method to remove the user credentials created by the Authenticate
method. If the function succeeds, the per-session-hashed password is inval-
idated. Therefore, you need to call the Authenticate method with binit=true
to get a new per-session-hashed password.

UpdatePassword
Syntax: IEMSC_DECL IEMSC_ERR UpdatePassword

Parameters:
const char *szUsername,
const char *szOldpassword,
const char *szNewpassword

Returns: IEMSC_NO_ERR on success.
Description:
Use this method to change the password for the given username. Both the

szOldpassword and szNewpassword feilds are clear text. The new pass-
word must contain no less than 6 characters.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 53

CHAPTER 6

CLIENT API C++ INTERFACE

MESSAGE FOLDER ACCESS

54

Message
Folder
Access

CreateFolder
Syntax: IEMSC_DECL IEMSC_ERR CreateFolder

Parameter:
const char *szFoldername

Returns: IEMSC_NO_ERR on success.

Description:

Use this method to create a new folder in the user's HOME directory. If your
folder name contains non-ASCII characters say Chinese GB/BIG5, the
szFoldername field must be in UTF8 encoding. See Appendix D for details.

RenameFolder
Syntax: IEMSC_DECL IEMS_ERR RenameFolder

Parameters:
const char *szOldFoldername,
const char *szNewFoldername

Returns: IEMSC_NO_ERR on success.

Description:
Use this method to rename an existing folder in the user's HOME directory.
If your new folder name contains non-ASCIl characters say Chinese GB/
BIG5, the szNewFoldername field must be in UTF8 encoding. See Appendix
D for details.

Note: There are four special folders which cannot be renamed. They are
the "inbox", "outbox", "trash" and "drafts" folders. If you attempt to
rename one of these special folders, IEMSC_SPECIAL_FOLDER is

returned.

DeleteFolder
Syntax: IEMSC_DECL IEMSC_ERR DeleteFolder

Parameter:
const char *szFoldername

Returns: IEMSC_NO_ERR on success.

Description:

Use this method to delete an existing folder in the users HOME directory. If
this folder still contains messages, the folder cannot be deleted and
IEMSC_FOLDER_NOT_EMPTY will be returned.

Note: There are four special folders cannot be deleted. They are the
"inbox", "outbox", "trash" and "drafts" folders. If you attempt to
rename one of these special folders, IEMSC_SPECIAL FOLDER is

returned.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

CLIENT API C++ INTERFACE CHAPTER 6

MESSAGE FOLDER ACCESS

ReadFolderAttributes
Syntax: IEMSC_DECL IEMSC_ERR ReadFolderAttributes

Parameters:
const char *szFoldername,
unsigned long *ulNmsgs,
unsigned long *ulRecent,
unsigned long *ulUnseen,
unsigned long *ulUidnext,
unsigned long *ulSize

Returns: IEMSC_NO_ERR on success.

Description:
Use this method to read the attributes of a folder. There are 5 attributes asso-
ciated with each folder. They are:

ulNMsgs - total number of messages

ulRecent - number of new messages added to this folder since last
access

ulUnseen - number of unread messages in this folder

ulUidnext - the next available UID in this folder

ulSize - size of this folder

Note: The size of the folder is computed every time this method is called.
ulSize can be set to equal NULL if the application is not interested in the
folder's size to achieve faster response.

GetAllFoldernames
Syntax: IEMSC_DECL IEMSC_ERR GetAllFoldernames

Parameter:
char ***pFolderNames

Returns: IEMSC_NO_ERR on success.

Description:

This method is used to read all the available folders in the users HOME direc-
tory. If the folder name contains non-ASCII characters, the folder name is
encoded in modified UTF-7 encoding (See Appendix D for details). The appli-
cation must call FreeFoldernames method to release the buffer allocated by
this method after used.

Example:

iemsc iemsc;

IEMSC_ERR err;

char **pFolders;

err iemsc.Authenticate(...);
iemsc.GetAllFoldernames (&pFolders) ;

err

if (err == IEMSC_NO_ERR) {
char **p;
for (p = pFolders; p && *p != NULL; p++) {

printf ("Folder name: %s\n", *p);

}
INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 55

CHAPTER 6

CLIENT API C++ INTERFACE

MESSAGE UID AccEss

Message UID

56

Access

iemsc.FreeFolderNames (pFolders) ;

}

FreeFoldernames
Syntax: IEMSC_DECL void FreeFoldernames

Parameter:
char **pFolderNames

Returns: NONE

Description:
Use this method to release the buffer allocated by the GetAllFoldernames
method. Failure to release this buffer after use will result in memory leakage.

GetUIDs
Syntax: IEMSC_DECL IEMS_ERR GetUIDs

Parameters:
const char *szFolderName,
const enum eSortDirection eSortDirection,
const enum eSortKey eSortKey,
unsigned long ** pUIDs,
unsigned long pagesize=0,
unsigned long pagenumber=0;

Returns: IEMSC_NO_ERR on success

Description:

This method is used to read all the Message UIDs stored in a given folder.
The Message UIDs are returned in an array that is sorted based on the value
specified in the eSortDirection and eSortKey parameters. The last element
in the returned array is always ZERO. If a non-zero pagesize is specified,
only 'pagesize’ number of UIDs in the given pagenumber are returned.
Therefore, your application can make use of the pagesize and pagenumber
value to access chuck of UIDs at a time. Your application must call the Free-
Buffer method to release the UIDs buffer allocated by this method after use.

Note: If DEFAULT _DIRECTION and/or DEFAULT _KEY is specified in the
eSortDirection and / or eSortKey fields, the values specified in the
Authenticate method are used.

Example:

iemsc iemsc;
IEMSC_ERR err;
unsigned long *uids, *puid;

err = ilemsc.Authenticate(....);

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

CLIENT API C++ INTERFACE CHAPTER 6

MESSAGE UID AccEss

/* only get 10 UIDs in page ZERO */
err = lemsc.GetUIDs ("inbox", DEFAULT DIRECTION, DEFAULT KEY,
&uids, 10, 0);
if (err == IEMSC NO_ERR) {
puid = uids;
while (*puid != 0) {
printf ("UID: %1d\n", *puid);
puid++;

}

iemsc.FreeBuffer (uids) ;

GetUIDsWithSearchKey
Syntax: IEMSC_DECL IEMSC_ERR GetUIDsWithSearchKey

Parameters:
const char *szFolderName,
const enum eSortDirection eSortDirection,
const enum eSortKey eSortKey,
const enum eSearchKey eSearchKey,
const char *szSearchValue,
const time_t tBefore,
const time_t tAfter,
unsigned long ** pUIDs,
unsigned long *ulHit,
unsigned long pagesize=0,
unsigned long pagenumber=0

Returns: IEMSC_NO_ERR on success.

Description:

The iemsc class provides simple search capability to find Message UIDs by
matching keywords in message FROM, TO, SUBJECT fields, or by matching
a date/date range.

When the eSearchKey field is set to FROM_KEY, TO_KEY, or
SUBJECT_KEY, keyword searching is specified in the szSearchValue field.
If szSearchValue is set to NULL, this method searches UIDs with the given
FROM, TO or SUBJECT field absent in the message.

When eSearchKey field is set to DATE_KEY, this method searches UIDs that
matches the time value defined in tBefore and / or tAfter fields. You can
specify either tBefore or tAfter to (time_t)-1 if not searching message UID in
a given date range.

The number of message that match the searching criteria is returned in the
ulHit field. Similar to GetUIDs method, the pagesize and pagenumber fields
can be used to retrieve chunks of UIDs at a time. The FreeBuffer method
needs to be called in order to release the UIDs buffer allocated by this
method after use.

Note: If DEFAULT_DIRECTION and/or DEFAULT_KEY is specified in the
eSortDirection and / or eSortKey fields, the values specified in the
Authenticate method are used.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 57

CHAPTER 6 CLIENT API C++ INTERFACE

MESSAGE UID AccEss

Example:

/* Find message with subject line contains 'Hello' */
iemsc iemsc;

IEMSC_ERR err;

unsigned long *uids, *puid;

unsigned long nFound = 0;

err
err

iemsc.Authenicate(...);

iemsc.GetUIDsWithSeachKey ("inbox",
DEFAULT DIRECTORY,
DEFAULT_ KEY,
SUBJECT_KEY,

"Hello",
_l’
_l’
&uids,
&nFound,
10,
0);

if (err == IEMSC NO ERR) {

printf ("Found %1d messages\n", nFound) ;

puid = uids;

while (*puid != 0)
printf ("UID: %$1d\n", *puid);
puid++;

}

iemsc.FreeBuffer (uids) ;

GetPrevNextUID
Syntax: IEMSC_DECL IEMSC_ERR GetPrevNextUID

Parameters:
const char *szFolderName,
const enum eSortDirection eSortDirection,
const enum eSortKey eSortKey,
unsigned long ulUid,
unsigned long ulPagesize,
unsigned long *ulPrevUid,
unsigned long *ulNextUid,
unsigned long *ulPagenumber

Returns: IEMSC_NO_ERR on success.

Description:

This method is used to locate the previous and next message UID of a given
message UID using a specified sort direction and sort key. If the ulPagesize
field is not ZERO, this method also computes the page number that the given
UID is located. If there are no previous and / or next UIDs in this sorted tree,
the value of ulPrevUid and / or ulNextUid is set to ZERO.

Note: If DEFAULT_DIRECTION and /or DEFAULT_KEY is specified in the

eSortDirection and / or eSortKey fields, the values specified in the
Authenticate method are used.

58 INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

CLIENT API C++ INTERFACE

CHAPTER 6

MESSAGE UID AccEss

Example:

iemsc iemsc;

IEMSC_ERR err;

unsigned long prev_uid, next_uid;
unsigned long pagernumber;

err
err

iemsc.Authenicate(...);

iemsc.GetPrevNextUid ("inbox",
DEFAULT DIRECTION,
DEFAULT KEY,
100,
10,
&prev_uid,
&next uid,
&pagenumber) ;

if (err == IEMSC_NO_ERR) ({

if (prev_uid != 0)

printf ("Previous uid: %1d\n", prev_uid);

if (next_uid != 0)

printf ("Next uid: %1d\n", next uid);
printf ("UID 100 is located in page:

GetPrevNextUIDWithSearchKey

, pagenumber) ;

Syntax: IEMSC_DECL IEMSC_ERR GetPrevNextUIDWithSearchKey

Parameters:
const char *szFolderName,

const enum eSortDirection eSortDirection,

const enum eSortKey eSortKey,
const enum eSearchKey eSearchKey,
const char *szSearchValue,

const time_t tBefore,

const time_t tAfter,

unsigned long ulUid,

unsigned long ulPagesize,

unsigned long *ulPrevUid,

unsigned long *ulNextUid,

unsigned long *ulPagenumber

Returns: IEMSC_NO_ERR on success.

Description:

GetPrevNextUIDWithSearchKey is similar to the GetPrevNextUID method
but with simple searching capability. See the GetUIDsWithSearchKey

method on the how to search message in a folder.

Note: /f DEFAULT_DIRECTION and / or DEFAULT_KEY is specified in
the eSortDirection and / or eSortKey fields, the values specified in

Authenticate method are used.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

59

CHAPTER 6

CLIENT API C++ INTERFACE

MESSAGE UID AccEss

60

Example:

iemsc iemsc;

IEMSC_ERR err;

unsigned long prev_uid, next_ uid;
unsigned long pagernumber;

time t now;

time_t tBefore;

/* we look for message received two days ago */
now = time (NULL) ;

tBefore = now - (24 * 60 * 60 * 2);
err = lemsc.Authenicate(...);
err = iemsc.GetPrevNextUidWithSearchKey ("inbox",

DEFAULT DIRECTION,
DEFAULT_KEY,
DATE_KEY,

NULL,

tBefore,
(time_t) -1,

100,

10,

&prev_uid,

&next uid,

&pagenumber) ;
if (err == IEMSC_NO_ERR) {
if (prev_uid != 0)
printf ("Previous uid: %$1d\n", prev_uid);
if (next_uid != 0)

printf ("Next uid: %1d\n", next uid);
printf ("UID 100 is located in page: %1d\n", pagenumber) ;

GetMessagelnfo
Syntax: IEMSC_DECL IEMSC_ERR GetMessagelnfo

Parameters:
const char *szFolderName,
unsigned long ulUid,
char **pFrom,
char **pTo,
char **pCc,
char **pSubject,
char **pDate,
unsigned long &ulSize,
unsigned long &ulFlags

Returns: IEMSC_NO_ERR on success.

Description:

This method is used to get the message FROM, TO, CC, DATE and SUB-
JECT header fields as well as the message size and flags. The TO and CC
fields can contain one or more email addresses which are separated by a
COMMA in the return buffer. The application needs to call the FreeBuffer
method to release the buffers returned in the pFrom, pTo, pCc, pSubject and
pDate fields.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

CLIENT API C++ INTERFACE CHAPTER 6

MESSAGE UID AccEss

The ulFlags fields contain a bitwise ORed message flag. Applications can
use the IS_XXX macro defined in IEMSCAPI.H to test if a certain message
flag is ON or OFF.

CopyMessage
Syntax: IEMSC_DECL IEMSC_ERR CopyMessage

Parameters:
const char *szSourceFolder,
const unsigned long ulUid,
const char *szDestinationFolder

Returns: IEMSC_NO_ERR on success.

Description:
Use this method to copy a message from one folder to another.

MoveMessage
Syntax: IEMSC_DECL IEMSC_ERR MoveMessage

Parameters:
const char *szSourceFolder,
const unsigned long ulUid,
const char *szDestinationFolder

Returns: IEMSC_NO_ERR on success.

Description:
Use this method to move a message from one folder to another.

DeleteMessage
Syntax: IEMSC_DECL IEMSC_ERR DeleteMessage

Parameters:
const char *szFolderName,
const unsigned long ulUid

Returns: IEMSC_NO_ERR on success.

Description:
Use this method to delete a message from a folder.

MarkMessageAsRead
Syntax: IEMSC_DECL IEMSC_ERR MarkMessageAsRead

Parameters:
const char *szFolderName
const unsigned long ulUid

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 61

CHAPTER 6

CLIENT API C++ INTERFACE

MESSAGE HEADER / CONTENT ACCESS

62

Message
Header /
Content
Access

Returns: IEMSC_NO_ERR on success.

Description:
Use this method to set the SEEN bit in the message flag. It will also update
the 'unseen' attribute in the given folder.

GetMimeStructure
Syntax: IEMSC_DECL IEMSC_ERR GetMimeStructure

Parameters:
const char *szFolderName,
const unsigned long ulUid,
struct MIMEBODY ** pBody

Returns: IEMSC_NO_ERR on success.
Description:
This method is used to get the MIME tree structure for a given message UID.

The struct MIMEBODY is defined as follows:

struct MIMEBODY

{

char *ct; /* content-type */
char *cst; /* content sub type */
char *cte; /* content transfer encoding */

char *name; /* name parameter in content-type */
char *filename; /* filename parameter in content-disposition */
char *charset; /* charset parameter in cotent-type */
char *ctdisp; /* content disposition */
unsigned long offset;
unsigned long size;
struct MIMEBODY **child;
unsigned int n child;
int part_number; /* identifer of a body part in the
MIME structure */
}i

When accessing a single MIME body message, this method returns an array
with a single element only. The ‘part_number of this MIME body is set to 0,
and the child pointer is NULL, and n_child is zero.

For Multipart MIME messages (see Figure 11 on page 42), this method
returns a struct MIMEBODY 'm' with n_child equal to 2, the child pointer set,
and the part_number of this outmost MULTIPART/MIXED MIME entity is 0.
The child pointer can be accessed via indexed array (index 0 and 1) which
stores the MIME structure of the TEXT/PLAIN and IMAGE/JPEG MIME entity
respectively. The part_number of the TEXT/PLAIN and IMAGE/JPEG MIME
entity is 1 and 2 respectively

For Message / RFC-822 messages (see Figure 12 on page 42), this method

returns a struct MIMEBODY 'm' with n_child equal to 1, the child pointer is
set, and the part_number of this outmost MESSAGE/RFC822 MIME entity

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

CLIENT API C++ INTERFACE CHAPTER 6

MESSAGE HEADER / CONTENT ACCESS

set to 0. The child pointer can be accessed via indexed array (index 0) which
stores the MIME structure of the TEXT/HTML MIME entity. The part_number
of the TEXT/HTML MIME entity is 1.

The application must call the FreeMimeBody method to release the struct
MIMEBODY pointer after use.

Example:

void traverse (struct MIMEBODY *m)

{
printf ("Content-type: %s/%s\n", m->ct, m->cst);
if (m->n_child > 0) ({
unsigned long 1i;
for (1 = 0; 1 < m->n child; i++) {
traverse (m->child[i]) ;
1
1
1

int main(int argc, char *argv[]) {

/* traverse each MIME entity in the tree */
iemsc iemsc;

IEMSC_ERR err;

struct MIMEBODY *m=NULL;

err = ilemsc.Authenticate(...);
err = iemsc.GetMimeStructure ("inbox", 100, &m) ;
if (err == IEMSC NO_ERR) {

traverse (m) ;

iemsc.FreeMimeBody (m) ;

}
}

GetMimeBody
Syntax: IEMSC_DECL IEMSC_ERR GetMimeBody

Parameters:
const char *szFolderName,
unsigned long ulUid,
int iPartNumber,
char **pDecodeStream,
unsigned long &ulLength

Returns: IEMSC_NO_ERR on success.

Description:

This method is used to get the decoded byte stream of a MIME entity in a
message. iPartNumber is used to address which body part is to be decoded.
The decoded byte stream is returned in the pDecodeStream pointer and the
length of the decoded byte stream is returned in the ulLength field. The appli-
cation needs to call the FreeBuffer method with the pDecodeStream after
use.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 63

CHAPTER 6

CLIENT API C++ INTERFACE

MESSAGE HEADER / CONTENT ACCESS

64

Example:

iemsc iemsc;

IEMSC_ERR err;

char *decode_data = NULL;
unsigned long len;

err = iemsc.Authenticate(...);
err = iemsc.GetMimeBody ("inbox", 1, 0, &decode data, len);
if (err == IEMSC NO ERR) {

printf ("Length of decoded byte stream: %$1d\n", len);
iemsc.FreeBuffer (decode data) ;

}

GetMessageHeader
Syntax: IEMSC_DECL IEMSC_ERR GetMessageHeader

Parameters:
const char *szFolderName,
unsigned long ulUid,
char **pHeaderStream,
unsigned long &ulHeaderSize

Returns: IEMSC_NO_ERR on success.

Description:

This method is used to get the full RFC822 message header for a given mes-
sage. The header is returned in the pHeaderStream pointer and its length is
returned in the ulHeaderSize field.

GetMessageSource
Syntax: IEMSC_DECL IEMSC_ERR GetMessageSource

Parameters:
const char *szFolderName,
unsigned long ulUid,
char **pMessageSource,
unsigned long &ulMessageSize

Returns: IEMSC_NO_ERR on success.

Description:

This method is used to get the complete message content for a given mes-
sage. The message content is returned in the pMessageSource pointer and
its length is returned in the uIMessageSize field.

Note: /In the IEMS MessageStore, each message is stored as a separate
file under the user's HOME directory. Each message is a RFC822/
MIME formatted message with a 6-byte binary header at the begin-
ning of the message. If your application tries to interpret the mes-
sage content by itself, it should skip the first 6 octets of the message.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

CLIENT API C++ INTERFACE CHAPTER 6

MESSAGE SUBMISSION

GetEmbeddedHeaders
Syntax: IEMSC_DECL IEMSC_ERR GetEmbeddedHeaders

Parameters:
const char *szFolderName,
unsigned long ulUid,
int iPartNumber,
char **pFrom,
char **pTo,
char **pCc,
char **pSubject,
char **pDate

Returns: IEMSC_NO_ERR on success.

Description:

This function is used to read the 5 header fields of an embedded RFC822
MIME entity. In the example in Figure 12, we have two MIME entities. The
first one is MESSAGE/RFC822 with iPartNumber equal to 0. The second
one is TEXT/HTML with iPartNumber equal to 1. We can use this method to
read the embedded message header (i.e. From: peter@company.com ..) by
setting iPartNumber equal to 0. The application needs to call the FreeString
method with the pFrom, pTo, pCc, pSubject and pDate fields to release the
allocated memory after use.

NOTE: The embedded headers always belong to the MESSAGE/RFC822
MIME entity with iPartNumber = 0 in this sample message.

Message ComposeMail
Submission Syntax: [IEMSC_DECL IEMSC_ERR ComposeMail

Parameters:
const char *szCharset,
const char *szToAddress,
const char *szCcAddress,
const char *szBccAddress,
const char *szSubject,
const char *szMailbody,
const bool bHTMLbody,
const struct attachment *attach,
const int nAttachment,
const bool bSaveToDraft,
const bool bSaveToOutbox

Returns: IEMSC_NO_ERR on success.
Description:
This method is used to submit a message into the MQ subsystem (Message

Transfer Agent). The szCharset field controls the charset parameter to be
used in the generated message. An EMPTY STRING can be specified such

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 65

CHAPTER 6

CLIENT API C++ INTERFACE

MESSAGE SUBMISSION

66

that the charset value specified in Authenticate method is used. The szToAd-
dress, szCcAddress and szBccAddress fields specify the Internet email
address in the message TO, CC and BCC headers respectively. These are
the recipient addresses for message delivery. If there are more than a single
address in any of these fields, use a COMMA to separate each of them. At
least one recipient address must be specified in szToAddress, szCcAddress
or szBccAddress. If not, IEMSC_ERR_NO_RECIPIENT is returned. The
message subject is set in the szSubject field. The szMailbody field contains
the message content. If szMailbody is HTML formatted, set bHTMLbody to
true, otherwise, set it to false. One or more attachments in the message can
be specified in the attach field. The attachment structure is defined as:

struct attachment

{
char *on_disk file name;
char *display name;
char *ct;
char *cst;
char *cte;

}i

The on_disk_file_name field sets the location of the attachment on the local
filesystem. The display _name field suggests the name to be displayed by the
recipient email agent.

Note: /n the Linux version, your application must have READ permission
for the file specified in on_disk_file_name.

The ct and cst fields suggest the content type and content subtype of this file
attachment and the cte field suggests the encoding method for this attach-
ment. This can be base64, quoted-printable, 7bit or 8bit. If you set ct, cst
and cte to NULL, the system will try to lookup the mapping for you based on
the file extension in the display_name field. If no mapping can be found, the
default Content-Type will be set to APPLICATION/OCTET-STREAM and the
encoding set to BASEG4. If there is no attachment in the message, set nAt-
tachment to ZERO. If the bSaveToDraft field is set to TRUE, the message is
saved to the user's 'drafts' folder but not submitted to MQ subsystem. If
bSaveToOutbox field is set to true, a copy of the message is saved to the
user's 'outbox' folder after being submitted to MQ subsystem. When
bSaveToDraft is set, the value of bSaveToOutbox field is ignored.

Example:

iemsc iemsc;

IEMSC_ERR err;

struct attachment att;

att.on disk file name="c:\\temp\\templ23.dat"

att.display name="my note.txt"

att.ct="text"

att.cst="basic"

att.cte="7bit"

err iemsc.Authenticate(...);

iemsc.ComposeMail ("US-ASCII",
"john@company .com, mary@company .com",

nn
i

err

nn
1

"Test message",
"Hi, this is a test message.\r\nPlease ignore\r\n",

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

CLIENT API C++ INTERFACE CHAPTER 6

OTHER FUNCTIONS

Other
Functions

false,
&att,
1,

false,
true) ;

FreeString
Syntax: IEMSC_DECL void FreeString

Parameter:
char *pString

Returns: NONE
Description:

Releases the string buffer allocated by various iemsc methods.

FreeBuffer
Syntax: IEMSC_DECL void FreeBuffer

Parameter:
void *pBuffer

Returns: NONE
Description:

Releases the buffer allocated by various iemsc methods.

FreeMimeBody
Syntax: IEMSC_DECL void FreeMimeBody

Parameter:
struct MIMEBODY *mimebody

Returns: NONE
Description:

Releases the struct MIMEBODY buffer allocated by the GetMimeStructure
method.

IsSpecialFolder
Syntax: IEMSC_DECL bool IsSpecialFolder

Parameter:
char *szFoldername

Returns: true or false

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 67

CHAPTER 6

CLIENT API C++ INTERFACE

OTHER FUNCTIONS

68

Description:

Tests if the given folder name is a SPECIAL folder. A SPECIAL folder cannot
be renamed or deleted. The 4 special folders are inbox, outbox, trash and
drafts.

utf7_decimal
Syntax: IEMSC_DECL char *utf7_decimal

Parameter:
char *utf7

Returns: A string pointer to a &#DDDDD; encoded stream

Description:

In the IEMS MessageStore, when a folder contains non-ASCIl characters,
the folder name is encoded in a modified UTF7 encoding scheme as stated
in RFC2060. This modified UTF7 encoding is not supported by many brows-
ers. Applications can use this method to convert UTF7 encoded folder
names to &#DDDDD; representation which is supported by most browsers.
The FreeString method needs to be used to release the return buffer after
use. See Appendix D for details on UTF7 encoding.

GetHomeDirectory
Syntax: IEMSC_DECL char *GetHomeDirectory

Parameters:
NONE

Returns: A string pointer to the location of the users HOME directory
Description:
This method is used to retrieve the users HOME directory. Applications can

save this value and call the second form of the Authenticate method to re-
authenticate the user.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

CHAPTER 7
Client APl PHP Interface

The IEMS Client PHP APl is an open PHP API interface for 3rd party devel-
opers, used to write messaging applications on top of the IEMS messaging
server. It encapsulates most of the functional details provided by the different
IEMS subsystems and provides a simplified APl interface for developers. The
functions in the Client PHP API are specially designed for writing Web Mail
Client and related applications for IEMS. As PHP is a very common and sim-
ple web programming language to use, web designer and web application
programmers can easily modify web mail client interfaces included in the
IEMSCPHP API toolkit to fulfill their specific requirements.

The IEMS Client PHP API provides functions that cover three major func-
tional areas:

 Authentication and Password Management
» Message Store Access
* Message Submission

Descriptions of each of these functional areas can be found in Chapter 5.

Installation The IEMSCPHP extension library is complied against PHP version 4.3.0. The
revision numbers are listed below:

PHP API 20020918
PHP Extension 20020429
Zend Extension 20021010

If you are not using this version of PHP in your system, the IEMSCPHP
extension library cannot be used in your server. Please obtain the PHP
source code from www.php.net. Alternatively, for Win32 operating systems,
you can download the pre-built binary from www.php.net. Please consult the
PHP home page on how to install and configure PHP with your Apache
server. Once PHP 4.3.0 is properly installed and configured with your
Apache server, you can continue to install the IEMSCPHP extension on your
system.

Before you can build IEMS enabled applications, you need to install and con-
figure the IEMS Client API with your development environment. The IEMS
API’'s can be found on your Version 7 installation CD, or can be downloaded
from the IMA web site. For more details on how to download, see the IEMS
API page at http://www.ima.com/iems/api.html. Once you have obtain the
Client API distribution file, you can installed the Client PHP API library by fol-
lowing these procedures:

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 69

CHAPTER 7 CLIENT API PHP INTERFACE

INSTALLATION

Microsoft Windows (Win32)
To install the Client API under Windows, perform the following steps:

1. Locate and unzip the iemsctoolkit.zip to your local harddisk. For
example c:\iemsctoolkit

2. Copy c:\iemsctoolkit\lib\iemscapi.dll to your IEMS installation
directory (c:\iems is the default location).

3. Copy c:\iemsctoolkit\libliemscphp.dll to your PHP extension
library directory (for example, c:\php-4.3.0-win32\lib).

4. Copy c:\iemsctoolkitiemsc*.* to the IEMS htdocs directory, for
example: c:\iems\apache\htdocs\iems\iemsc

5. Add extension=iemscphp.dil to the PHP.INI file.

6. Make sure your IEMS installation directory is listed in the system
PATH environment variable

7. Restart the Apache server

Linux
To install the Client API under Linux, perform the following steps:

1. Locate and untar the iemsctoolkit.tar file to your local harddisk. For
example:

mkdir /opt/iems/iemsctoolkit
cd /opt/iems/iemsctoolkit
tar xvf /tmp/iemsctoolkit.tar

2. Copy /opt/iems/iemsctoolkit/lib/libiemscapi.so to the IEMS library
directory, ie. /opt/iems/lib

3. Copy /opt/iems/iemsctoolkit/lib/iemscphp.so to your PHP extension
library directory (i.e. /usr/lib/php4)

4. Copy /opt/iems/iemsctoolkit/iemsc/*.* to the IEMS htdocs directory
(for example /opt/iems/htdocs/iems/iemsc).

5. Add extension=iemscphp.so to the PHP.INI file.
6. Run Idconfig-v to update your system library cache.

7. Modify your apache httpd.conf file so that Apache is started with
UID=iems and GID=iems.

Note: Running Apache as the IEMS user is necessary for the PHP
libraries to operate properly. If you need to run several virtual
servers running with different UID’s, see http://httpd.apache.org/
docs/suexec.html for instructions.

70 INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

CLIENT API PHP INTERFACE CHAPTER 7

AUTHENTICATION / PASSWORD MANAGEMENT

Authentication
| Password
Management

8. Restart the Apache server

Note: Please remove the extension=Idap.so in your PHP.INI file as IEMS
uses its own version of libldap32.so that is not compatible with the
Idap.so distributed by PHP.

Once the system is ready, you can start using the sample applications
included in the IEMSCPHP toolkit. Start your favorite browser and connect to

http.//<hostname>/iems/iemsc/login.htm

To try out the PHP based Web Mail Client.

Software License

The IEMS Client PHP API library requires a proper IEMS message store
license to operate. Please obtain the software license from www.ima.com
and install the license properly before installing the API toolkit. Otherwise, the
IEMS Client PHP library cannot operate properly.

iemsc_authenticate

Parameters:
String username,
String password,
String locale,
String charset,
long sort_direction,
long sort_key,
bool init

Returns: This function return an array where:
array[0] contains the error code

When init flag is set to true;
array[1] contains the per session hashed password
array[2] contains the location of the user HOME DIRECTORY

Description:

This function is used with init=frue to verify the username (ie. user@domain)
and the clear text password. If the username and password are correct,
IEMSC_NO_ERR is returned in array[0]. The IEMSC C++ API subsystem
will compute a per session hashed password and return the value in array[1].
The location of the user HOME DIRECTORY is returned in array[2]. The
application should employ some logic to store this hashed password and
home directory that are used by other functions in IEMSCPHP extension
library. The locale and charset parameters can be set to EMPTY STRING.
In this case, the system-wide locale and charset value will be used. The
sort _direction and sort key values control the sorting order of UIDs.
IEMSC_DEFAULT_SORT_DIRECTION can be set to use the system wide

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 71

CHAPTER 7

CLIENT API PHP INTERFACE

MESSAGE FOLDER ACCESS

72

Message
Folder
Access

default. The same holds true for IEMSC_SORT_BY_DEFAULT_KEY. See
Appendix C for details.

When init flag is false, the application should pass the per session hashed
password to the password field for checking. In this case, the application
should employ its own logic to store this per session hashed password for
succeeding iemsc_authenticate calls. Applications should always call
iemsc_authenticate with init=false to update the last access time stamp
before calling other functions in the IEMSCPHP extension library. If the ses-
sion has expired, IEMSC_SESSION_EXPIRED is returned in array[0]

iemsc_logout

Parameters:
String username,
String hashedpassword

Returns: IEMSC_NO_ERR on success.

Description:
This function is used to clear the login session information of the given user-
name.

iemsc_updatepassword

Parameters:
String username,
String oldpassword,
String newpassword

Returns: IEMSC_NO_ERR on success.

Description:
This function is used to change the password of the given username. The
caller must pass the correct oldpassword for verification. Both oldpassword
and newpassword must be in cleartext. newpassword must contain at least
6 characters.

iemsc_createfolder

Parameters:
String username,
String hashedpassword,
String homedir,
String newfoldername

Returns: IEMSC_NO_ERR on success.

Description:
This function is used to create a new folder for the given username. The
value of hashedpassword and homedir are used to verify the provided user-

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

CLIENT API PHP INTERFACE CHAPTER 7

MESSAGE FOLDER ACCESS

name. If newfoldername contains non-ASCII characters, a UTF-8 encoded
string should be used (See Appendix D for details)

iemsc_renamefolder

Parameters:
String username,
String hashedpassword,
String homedir,
String oldfoldername,
String newfoldername

Returns: IEMSC_NO_ERR on success.

Description:

This function is used to rename an existing folder to newfoldername. The
value of hashedpassword and homedir are used to verify the provided user-
name. If newfoldername contains non-ASCII characters, a UTF-8 encoded
string should be used (See Appendix D for details).

iemsc_deletefolder

Parameters:
String username,
String hashedpassword,
String homedir,
String foldername,

Return value: IEMSC_NO_ERR on success.

Description:

This function is used to delete an existing folder. The value of hashedpass-
word and homedir are used to verify the provided username. If the specified
folder is not empty, IEMSC_FOLDER_NOT_EMPTY is returned and the
folder is not deleted.

iemsc_readfolderattributes

Parameters:
String username,
String hashedpassword,
String homedir,
String foldername,
Long Reference nmsg,
Long Reference recent,
Long Reference unseen,
Long Reference uidnext

Returns: IEMSC_NO_ERR on success.

Description:
This function is used to read the 4 attributes, nmsg (number of message),

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 73

CHAPTER 7 CLIENT API PHP INTERFACE

MESSAGE FOLDER ACCESS

recent (number of recent message since last access to this folder), unseen
(number of unread message) and uidnext (the next available UID of this
folder) of the specified folder. The value of hashedpassword and homedir
are used to verify the provided username. The caller should pass a reference
to the variables for storing nmsg, recent, unseen and uidnext.

Example:

snmsg =

Srecent 0;

Sunseen 0;

Suidnext = 0;

Sret=iemsc_readfolderattributes ("user@company.com",
"A456718183803",
"c:\iems\msgstore\user@company.com",
"inbox",

&Snmsg,
&Srecent,
&Sunseen,
&Suidnext) ;

nmn o

iemsc_readfolderattributes_with_size

Parameters:
String username,
String hashedpassword,
String homedir,
String foldername,
Long Reference nmsg,
Long Reference recent,
Long Reference unseen,
Long Reference uidnext,
Long Reference size

Returns: IEMSC_NO_ERR on success.

Description:

This function is used to read the 5 attributes, nmsg (number of message),
recent (number of recent message since last access to this folder), unseen
(number of unread message), uidnext (the next available UID of the folder)
and size of the specified folder. The value of hashedpassword and homedir
are used to verify the provided username. The caller should pass a reference
to the variables for storing nmsg, recent, unseen, uidnext and size.

Note: This function needs to perform additional computation to get the size
of the specified folder name. For performance reason, use this func-
tion only if you need to know the size of a folder. Use
iemsc_readfolderattributes instead when the size attribute is not
needed.

74 INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

CLIENT API PHP INTERFACE CHAPTER 7

MESSAGE UID AccEss

Message UID
Access

iemsc_readallfoldernames

Parameters:
String username,
String hashedpassword,
String homedir

Returns: array containing individual folder names in each array element on
success, otherwise normal error code.

Description:

This function is used to read all the available folders of the given username.
The value of hashedpassword and homedir are used to verify the provided
username. Folder name needs to be encoded in modified UTF7 format if it
contains non-ASCII characters (See Appendix D for details).

Example:

Sret=iemsc_readallfoldernames ("user@company.com",
"A456718183803",
"c:\iems\msgstore\user@company.com") ;

/* make sure it is not an error code */
if (is_array(S$ret)) ({
for ($i = 0; $i < count(Sret); S$i++) {
echo "Folder $i -> Sret[$i]l\n";
1
1

iemsc_getuids

Parameters:
String username,
String hashedpassword,
String homedir,
String foldername,
Long sort_direction,
Long sort_key,
Long pagesize,
Long pagenumber

Returns: an array of Long integers containing individual UIDs on success.
The UIDs are sorted based on the sort_direction and sort_key value spec-
ified in this function. Otherwise, a normal error code is returned.

Description:

This function is used to read available message UIDs of the specified folder-
name of the user. The value of hashedpassword and homedir are used to
verify the given username. When this function succeeds, an array of UIDs is
returned. The UIDs are sorted based on the sort_key and sort_direction flag
specified in this function (See Appendix C for details). When pagesize is set
to zero, all available UIDs are returned. Otherwise, only pagesize number of
UIDs are returned for the given pagenumber. Therefore, an application can
make use of the pagesize and pagenumber value to implement a pagination
view for a folder.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 75

CHAPTER 7 CLIENT API PHP INTERFACE

MESSAGE UID AccEss

Example:

/*

* read the first 10 uids of inbox sorted by size in
* ascending order

*/

Sret=iemsc_readallfoldernames ("user@company.com",
"A456718183803",
"c:\iems\msgstore\user@company.com",
"inbox",

IEMSC_SORT BY SIZE,
IEMSC_SORT_DIRECTION_ ASCENDING,
10,
0);
if (is_array(Sret))
for ($i = 0; $i < count(Sret); $i++)
echo "Uid: Sret[$il\n";
1
1

iemsc_getprevnextuid

Parameters:
String username,
String hashedpassword,
String homedir,
Sting foldername,
Long uid,
Long pagesize

Returns: On success, an associative array with following keys is returned:
hash['prev'] /* the previous uid before the given uid */
hash['next] /* the next uid after the given uid */
hash['pagenumber'] /* the current page number of the given

uid with the given pagesize */
On failure - normal IEMSC error code

Description:

This function is used to locate the previous and next uid and the current page-
number of the given UID under the given foldername. The value of hashed-
password and homedir are used to verify the given username. This function
uses the value of sortkey and sortdirection stored in the login session for sort-
ing UIDs. If previnext uid equals to ZERO, there is no previous or next uid in
the sorted tree.

iemsc_searchuids

Parameters:
String username,
String hashedpassword,
String homedir,
String foldername,
Long sort_direction,
Long sort_key,
Long search_key,
String searchvalue,

76 INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

CLIENT API PHP INTERFACE CHAPTER 7

MESSAGE UID AccEss

Long time_before,

Long time_after,

Long pagesize,

Long pagenumber,

Long Reference matchcount

Returns: On success, an array of UIDs that match the searching criteria is
returned, otherwise normal IEMSC error code.

Description:

This is a function similar to iemsc_getuids but with simple searching capabil-
ity. Applications can search UIDs based on keyword matching in From, To,
or Subject fields, or search UIDs based on a date or a date range (See
Appendix D for details). The value of hashedpassword and homedir are used
to verify the given username.

When IEMSC_SEARCH_BY_FROM, IEMSC_SEARCH_BY_TO or
IEMSC_SERACH_BY_SUBJECT search_key are used, EMPTY STRING
can be specified as searchvalue to search message with the corresponding
field absent in the mail message.

When using IEMSC_SEARCH_BY_DATE search_key, you need to supply
time_before and/or time_after value. These values are in time_t format. Use
-1 in either time_before or time_after if you are not searching message in a
given time range.

Similar to the iemsc_getuids function, a non-zero pagesize and a pagenum-
ber can be used for implementing paginated views. The matchcount returns
total number of messages that match the searching criteria.

iemsc_searchprevnextuid

Parameters:
String username,
String hashedpassword,
String homedir,
String foldername,
Long sort_direction,
Long sort_key,
Long search_key,
String searchvalue,
Long time_before,
Long time_after,
Long pagesize

Returns: On success, an associative array with following keys is returned:
hash['prev'] /* the previous uid before the given uid */
hash['next] /* the next uid after the given uid */
hash[')pagenumber’] /* the current page number of the given uid
with the given pagesize */
On failure - normal IEMSC error code.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 77

CHAPTER 7

CLIENT API PHP INTERFACE

MESSAGE UID AccEss

78

Description:

This is a function similar to iemsc_getprevnextuid but with simple searching
capability. Applications can search previous and next UIDs of the given uid
based on keyword matching in From, To, or Subject fields, or search UIDs
based on a date or a date range (See Appendix C for details). The value of
hashedpassword and homedir are used to verify the given username. If prev/
next uid equals to ZERO, there are no previous or next uids in the sorted
search tree.

iemsc_getmessageinfo

Parameters:
String username,
String hashedpassword,
String homedir,
String foldername,
Long uid

Returns: On success, an associative array with the following keys:
hash['from'] /* a String contains the From header */

hash['to'] /* a String contains all the addresses in the To header,
each address is separated by COMMA */
hash['cc'] /* a String contains all the addresses in the Cc header,

each address is separated by COMMA */
hash['subject’] /* a String contains the subject header */
hash['date'] /* a String contains the date header */
hash['size'] /* an Long integer of the message size */
hash['flag] /* an Long integer of the message system flag */
On failure - normal IEMSC error code.

Description:

This function is used to read the 5 header fields (from, to, cc, subject and
date) and the size and message flag of the given uid in a folder. The value
of hashedpassword and homedir are used to verify the given username. The
To and Cc header may contain more than one addresses. A COMMA is used
to separate each address in the To and Cc header field.

iemsc_getmessagesinfo

Parameters:
String username,
String hashedpassword,
String homedir,
String foldername,
Array uids

Return values: On success, an array of associative arrays with the following
keys are returned:
hash['from'] /* a String contains the From header */

hash['to'] /* a String contains all the addresses in the To header,
each address is separated by COMMA */
hash['cc'] /* a String contains all the addresses in the Cc header,

each address is separated by COMMA */

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

CLIENT API PHP INTERFACE

CHAPTER 7

MESSAGE UID AccEss

hash['subject’] /* a String contains the subject header */
hash['date'] /* a String contains the date header */
hash['size'] /* an Long integer of the message size */
hash['flag] /* an Long integer of the message system flag */
On failure, normal IEMSC error code returned.

Description:

This function is used to read the 5 header fields (from, to, cc, subject and

date) and the size and message flag of the given uids array in a folder. The
value of hashedpassword and homedir are used to verify the given user-
name. The To and Cc header may contain more than one addresses. A

COMMA is used to separate each address in the To and Cc header fields.
Use this function instead of iemsc_getmessageinfo if you want to read more

than one UID message info at a time.

Example:

Suids=array (10, 11, 12);
Sret=iemsc_getmessagesinfo ("user@ecompany.com",

"A456718183803",
"c:\iems\msgstore\user@company.com",
"inbox",
Suids) ;
if (is_array($ret)) ({
for ($i = 0; $i < count($ret); $i++) {

echo "Subject for UID Suids[$i] is Sret[$i] ['subject']l\n";
1
}

iemsc_copymessage

Parameters:
String username,
String hashedpassword,
String homedir,
String srcfoldername,
Long uid
String destfoldername

Returns: IEMSC_NO_ERR on success.

Description:

This function is used to copy a message from a source folder to a destination
folder. The value of hashedpassword and homedir are used to verify the

given username.

iemsc_movemessage

Parameters:
String username,
String hashedpassword,
String homedir,
String srcfoldername,
Long uid
String destfoldername

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

79

CHAPTER 7

CLIENT API PHP INTERFACE

MESSAGE HEADER / CONTENT ACCESS

80

Message
Header /
Content
Access

Returns: IEMSC_NO_ERR on success.

Description:

This function is used to move a message from source folder to destination
folder. The value of hashedpassword and homedir are used to verify the
given username.

iemsc_deletemessage

Parameters:
String username,
String hashedpassword,
String homedir,
String foldername,
Long uid

Returns: IEMSC_NO_ERR on success.

Description:
This function is used to delete a message from a folder. The value of hashed-
password and homedir are used to verify the given username.

iemsc_markmessageasread

Parameters:
String username,
String hashedpassword,
String homedir,
String foldername,
Long uid

Returns: IEMSC_NO_ERR on success.

Description:
This function is used to set the SEEN flag of a message in a folder. The value
of hashedpassword and homedir are used to verify the given username.

iemsc_getmessagestructure

Parameters:
String username,
String hashedpassword,
String homedir,
String foldername,

Long uid
Returns: On success, an array of associative arrays with the following keys:
hash['ct'] /* String, content type */
hash['cst'] /* String, content subtype */
hash['cte'] /* String, content transfer encoding */
hash['name'] /* String, 'name' parameter in content-type header */

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

CLIENT API PHP INTERFACE CHAPTER 7

MESSAGE HEADER / CONTENT ACCESS

hash['filename'] [* String, filename' parameter in

content-disposition header */
hash['ctdisp'] /* String, content disposition header */
hash['charset'] /* String, charset parameter in content-type header */

hash['partnumber’] /* Long, the 'partnumber’ of a body part */
hash['num_child] /* Long, number of CHILD body part of this

Multipart/* or Message/RFC822 entity */
On failure, normal IEMSC_ERR code

Description:

This function is used to read the structure of a MIME formatted message of
a given uid in a folder. The value of hashedpassword and homedir are used
to verify the given username.

When accessing a single MIME body message, the
iemsc_getmessagestructure function returns an array with 1 element only.
The partnumber of this MIME body is 0 and num_child of this MIME body is
also 0.

When accessing a Multipart MIME message (see Figure 11 on page 42), the
iemsc_getmessagestructure function returns an array with 3 elements.
Array[0] contains the MIME structure of the outermost MULTIPART/MIXED
MIME entity with partnumber set to 0 and num_child set to 2. Array[1] con-
tains the MIME structure of the TEXT/PLAIN MIME entity with partnumber set
to 1. Array[2] contains the MIME structure of the IMAGE/JPEG MIME entity
with parthnumber equal to 2.

When accessing a Message / RFC-822 MIME message (see Figure 12 on
page 42), the iemsc_getmessagestructure function returns and array with 2
elements. Array[0] contains the MIME structure of the outermost MESSAGE/
RFC822 MIME entity with partnumber set to 0 and num_child set to 1.
Array[1] contains the MIME structure of the TEXT/HTML MIME entity with
partnumber equal to 1.

iemsc_getmessagebody

Parameters:
String username,
String hashedpassword,
String homedir,
String foldername,
Long uid,
Long partnumber

Returns: On success, a string that contains the decoded data of the MIME
entity with the given partnumber, otherwise normal IEMSC_ERR code.

Description:

This function is used to read the decoded data stream of given uid and part-
number. The value of hashedpassword and homedir are used to verify the
given username. This function decodes the MIME entity based on the encod-
ing method specified in the content-transfer-encoding header in that MIME
entity.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 81

CHAPTER 7 CLIENT API PHP INTERFACE

MESSAGE HEADER / CONTENT ACCESS

iemsc_getmessageheader

Parameters:
String username,
String hashedpassword,
String homedir,
String foldername,
Long uid

Returns: On success, a string containing the full RFC822 message headers
for the given uid, otherwise a normal IEMSC_ERR code.

Description:

This function is used to read the full RFC822 message headers for a given
uid. The value of hashedpassword and homedir are used to verify the given
username. In a MIME formatted message, the first blank line (CRLF) sepa-
rates the RFC822 headers and the body of the mail message. Thus, this
function returns all the characters before the first blank line in the message
file.

iemsc_getmessagesource

Parameters:
String username,
String hashedpassword,
String homedir,
String foldername,
Long uid

Returns: On success, a string that contains the complete message content
of the given uid, otherwise a normal IEMSC_ERR code.

Description:

This function is used to read the entire message content (including headers
and all of the mail body parts) for a given uid. The value of hashedpassword
and homedir are used to verify the given username.

iemsc_getembeddedheaders

Parameters:
String username,
String hashedpassword,
String homedir,
String foldername,
Long uid,
Long partnumber

Returns: On success, an associative array with the following keys:
hash['from'] [* String, the embedded From header */
hash['to"] [* String, the embedded To header */
hash['cc'] [* String, the embedded Cc header */
hash['date'] [* String, the embedded Date header */

82 INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

CLIENT API PHP INTERFACE

CHAPTER 7

MESSAGE SUBMISSION

Message
Submission

hash['subject’] /* String, the embedded Subject header */
On failure, a normal IEMSC_ERR code is returned.

Description:

This function is used to read the 5 header fields of an embedded RFC822
MIME entity. In the example in Figure 12, we have two MIME entities. The
first one is MESSAGE/RFC822 with partnumber equal to 0 and the second
one is TEXT/HTML with partnumber equal to 1. We can use the
iemsc_getembeddedheaders function to read the embedded message
header (ie. From: peter@company.com ..) by setting partnumber to 0.

Note: The embedded headers always belong to the MESSAGE/RFC822
MIME entity with partnumber equal 0 in this sample message.

iemsc_composemail

Parameters:
String username,
String hashedpassword,
String homedir,
String charset,
String to,
String cc,
String bcc,
String subject,
String mailbody,
bool isHtmIBody,
Array attachment,
bool bSaveToDraft,
bool bSaveToOutbox

Returns: IEMSC_NO_ERR on success

Description:

This function is used to submit a message into IEMS MQ subsystem (Mes-
sage Transfer Agent). The value of hashedpassword and homedir are used
to verify the given username. The usage of each parameter is listed below:

charset: Defines the charset parameter for writing the mail body text. If this
is set to EMPTY STRING, the charset value specified in the
iemsc_authenticate function is used.

to, cc, bee: Defines the recipient address in the fo, cc and bcc list. If any of
these lists contain more than one email address, a comma is used to sepa-
rate each of them. Use an EMPTY STRING if you do not have any email
address for that given list.

Note: At least one email address must be present in either the to, cc or
bec lists. If no recipient address are present for any of these lists,
IEMSC_ERR_NO_RECIPIENT will be returned.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 83

CHAPTER 7

CLIENT API PHP INTERFACE

MESSAGE SUBMISSION

84

subject: Defines the message subject line. If the subject line contains non-
ASCII characters, the function will encode the subject line based on the
encoding scheme specified in RFC2047.

mailbody: Defines the mail content. If mailbody is an HTML formatted byte
stream, set isHtmIBody to true. In this case, the function generates a TEXT/
HTML body instead of TEXT/PLAIN body.

isHtmIBody: When set to true, the function generates a TEXT/HTML instead
of a TEXT/PLAIN MIME body in the message.

attachment: An array of attachments to be added in the mail message.
Each element is an associative array contain the following keys:

attach['ct'] [* content type */

attach['cst'] /* content subtype */

attach]['cte'] /* content transfer encoding */
attach['filename'] /* the physical filename where the raw data of

this attachment is stored */

attach['displayname'] /* the name to be displayed by the end user
mail agent (ie. the name parameter in the
content-type header */

Note: On Linux based systems, please make sure that the filename is in a
directory where the IEMSC API library has read permission.

bSaveToDraft: When set to true, the constructed message is saved to the
drafts folder instead of being submitted to the MQ subsystem.

bSaveToOutbox: When set to true, a copy of the sent message is copied to
the outbox folder. If bSaveToDraft folder is true, this flag is ignored.

Example1: Submit a simple message with no attachment:

Sattach=array(); /* prepare an empty attachment array */

Sret = iemsc_composemail ("user@company.com",
"A456718183803",
"c:\iems\msgstore\user@company.com",
"us-ascii",

"mary@company.com",
nn
'

nn

"Hi mary!\r\nhow are you doing?\r\n",
false,

Sattach,

false, /* don't save it to draft folder */
true); /* but save it to outbox */

Example 2: Submit a message with multiple recipients and 2 attachments:

Sattl['ct']="application";
Sattl['cst']="msword";
Sattl['cte']l="base64";
Sattl['filename']="c:\temp\a.dat";
Sattl['displayname']="myreport.doc";
Satt2['ct']="image";
Satt2['cst']l="jpeg";

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

CLIENT API PHP INTERFACE CHAPTER 7

OTHER FUNCTIONS

Satt2['cte']l="base64";

Satt2['filename']="c:\temp\b.dat";

Satt2['displayname']="map.jpg";

Sattach=array ($Sattl, Satt2);

$ret = iemsc_composemail ("user@company.com",
"A456718183803",
"c:\iems\msgstore\user@company.com",
"us-ascii",

"mary@company.com, jon@company.com",
nn
’

"boss@company.com", /* bcc to my boss | */

"Hi mary/jon!\r\nHere is the report of this week.\r\n",
false,

Sattach,

false, /* don't save it to draft folder */

true); /* but save it to outbox */

Other iemsc_isread

Functions Parameter:
Long flag

Returns: true if the SEEN bit in flag is set, false otherwise

Description:
This function checks if the SEEN bit in flag is set.

iemsc_isspecialfolder

Parameters:
String foldername

Returns: true if the given folder name is a SPECIAL folder

Description:

There are 4 special folders in the IEMS Message Store that should be not
deleted or renamed. Applications can use this function to test if the folder
name is one of these 4 special folders. The 4 special folder names are inbox,
outbox, trash and drafts.

iemsc_utf7_to_decimal

Parameters:
String foldername

Returns: String containing a &#DDDDD; encoded string for the given folder
name

Description:

This function converts the modified UTF7 encoded folder name into
&#DDDDD; Many browsers are not capable to interpret the modified
UTF7encoded string, however the &#DDDDD; presentation is supported by

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 85

CHAPTER 7 CLIENT API PHP INTERFACE

OTHER FUNCTIONS

most. Applications are suggested to use this function to convert any folder
name. If the given folder name contains pure ASCII characters, no conver-
sion will be taken.

86 INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

APPENDIX A
TESTMAQ.C Sample Program

The purpose of this program is to show how to insert and retrieve messages
from the message queue.

#include "mgapi.h"
#include <iostream.h>
#define SUBMIT

int main() {

/*set application name-test program name to "TESTMQ";*/
char appname[] = "TESTMQ";

/*set machine name of the LDAP server to "jasper.ima.com"*/
char Idap[] = "jasper.ima.com";

/*create an instance of class cMQ, name it a*/
cMQ a;

#ifdef SUBMIT /* to submit messages™*/
cUserInfo userl, user2,user3; /* create 3 instances of cUserInfo
name it userl, user2, user3*/
userl.setLan_addr("minnie@jasper.ima.com"); /*create test data*/
user2.setLan_addr("marielle@jasper.ima.com");
user3.setLan_addr("postmaster@jasper.ima.com");

/*create an object FROM™*/
/*create an instance of class cEnvHeader named from*/
cEnvHeader* from = new cEnvHeader();

/*assign the value of userl to from's add property*/
from->add(&userl);

/*create an object TO*/
/*create another instance of class cEnvHeader named to*/
cEnvHeader* to = new cEnvHeader();

/*assign the value of user2 to to's add property*/
to->add(&user2);

/*append the value of user3 to to's add property™*/
to->add(&user3);

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 87

APPENDIX A TESTMQ.C SAMPLE PROGRAM

/* The code above simulates the envelope information of a message. From
here, the envelope looks like:

From: minnie@jasper.ima.com
To : marielle@jasper.ima.com
postmaster@jasper.ima.com
*/

/*create an object of message™*/
/*create an instance of cMessage named msg*/
cMessage msg;

/*assign the value of from to the setFrom property of msg */
msg.setFrom(from);

/*assign the value of to to the setTo property of msg*/
msg.setTo(to);

/*error checking™®/
if(a.OpenMQChannel(channel, appname, ldap))
cout<<"result = "<<"OK"<<"\n";

/*insert msg to the local channel of the message queue*/
a.PutMsg(&msg, "localout");

/*assign the directory location of the inserted message to the
setMsgpath property of msg*/
msg.setMsgpath((char*)a.GetMsgPath(".msg"));

/*close the local channel of the Message Queue */
a.CloseMQChannel();
#endif /* SUBMIT */

#ifdef FETCH
if(!a.OpenMQChannel(channel, appname, ldap))
cout<<"result = "<<"OK"<<"\n";

/*create two instances of cMessage named msg2, msg3*/
cMessage*msg2, *msg3;

/*retrieve message from local output queue and assign value to msg2*/
msg2 = a.GetMsg("local");

/*error checking, if there is no message, return true*/
if(msg2 == NULL)
return(1);

/*error checking to determine if from property of message is not null*/
if(msg2->getFrom() == NULL)
return(1);

/*if message From: property has contents, display contents on screen */

88 INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

TESTMQ.C SAMPLE PROGRAM APPENDIX A

cout<<"from: "<<msg2->getFrom()->getFirst()->getLan_addr()<<"\n";

/*error checking to determine if To property of message is null */
if(msg2->getTo() == NULL)
return(1);

/*create an instance of cUserInfo p*/
cUserInfo * p;

/*get To: addresses and display them on screen */
for(p=msg2->getTo()->getFirst(); p=msg2->getTo()->getNext();){
cout<<"to:"<<p->getLan_addr()<<"\n";

}

/* Delete the message from the Queue directory */
a.DelMsg();

/*retrieve message from Message queue and assign value to msg3*/
msg3 = a.GetMsg("local");

/* error checking if msg is null return true */
if(msg3 == NULL)
return(1);

/*error checking if message property From: is null return true*/
if(msg3->getFrom() == NULL)
return(1);

/*display message property From: contents*/
cout<<"from: "<<msg3->getFrom()->getFirst()->getLan_addr()<<"\n";

/*error checking if message property To: is null, return true*/
if(msg3->getTo() == NULL)
return(1);

/*get all contents of the To: property and display on screen*/
for(p=msg3->getTo()->getFirst(); p=msg3->getTo()->getNext();)
cout<<"to:"<<p->getLan_addr()<<"\n";

/* Delete the message from the Queue directory */
a.DelMsg();

/*close local channel in the MQ Server*/
a.CloseMQChannel();

#endif /* FETCH */

return(0);

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 89

APPENDIX A TESTMQ.C SAMPLE PROGRAM

920 INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

APPENDIX B

MQ API Error Codes

Error Code Value Description
NO_ERR 0x00 No error
ERR_MALLOC 0x01 No available memory
ERR_NOTFOUND 0x02 Email address to delete is not
found
ERR_NOENTRY 0x03 No available user information
ERR_EMAILADDRFMT 0x04 Invalid email address format
ERR_INVALIDCHANNELL 0x05 Invalid channel entry
ERR_MQINIT 0x06 MQ Initialization failure
ERR_OPENMQCHANNEL 0x07 Error in opening MQ channel
ERR_CLOSEMQCHANNEL 0x08 Error in closing MQ channel
ERR_CREATEMQENTRY 0x09 Error in allocating memory for
new MQ entry
ERR_CREATEENV 0x0A Error in allocating memory for
new envelope data
ERR_NOFROM 0x0B No FROM/sender data
ERR_NOTO 0x0C No To/recipient data
ERR_NOMSGPATH 0x0D Unable to retrieve message path
ERR_FILE 0x0E Error in file manipulation
ERR_INSERTMQCHANNEL O0xOF Unable to add channel entry to
the MQ
ERR_PUTMQENVELOPE 0x10 Unable to store envelope infor-
mation to the MQ
ERR_CLOSEMQENTRY 0x11 Unable to submit MQ entry to the
preprocessor
ERR_REGISTERMODULE 0x12 Unabile to register the application
to LDAP
ERR_PARAM 0x13 Invalid input parameters
ERR_DELMSG 0x14 Error in deleting message file in
the MQ
ERR_UNREGISTERMODULE 0x15 Unable to unregister the applica-

tion to LDAP

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

91

APPENDIX B MQ API ERROR CODES

92 INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

APPENDIX C

Client APl Constants

UID Sort Fields

Value

Description

IEMSC_SORT_BY_DEFAULT KEY

Use the default sort field specified in the
iemsc_authenticate function. Defaults to
IEMSC_SORT_BY_UID

IEMSC_SORT BY_UID

Sort by UID Field

IEMSC_SORT_BY_FROM

Sort by Message From Header Field

IEMSC_SORT_BY_TO

Sort by first address in the To Header Field

IEMSC_SORT_BY_SUBJECT

Sort by message Subject Header Field

IEMSC_SORT_BY_DATE

Sort by message Date Field

IEMSC_SORT BY_SIZE

Sort by Message Size

UID Sort Order

Value

Description

IEMSC_DEFAULT_SORT_DIRECTION

Use the default sort direction specified in the
iemsc_authenticate function. This defaults to
IEMSC_SORT_DIRECTION_DECENDING.

IEMSC_SORT_DIRECTION_ASCENDING

Sort UID in ascending order

IEMSC_SORT_DIRECTION_DECENDING

Sort UID in decending order

UID Search Field

Value

Description

IEMSC_SEARCH_BY_FROM

Search UID with matched keyword in From
header

IEMSC_SEARCH_BY_TO

Search UID with matched keyword in To header

IEMSC_SEARCH_BY_SUBJECT

Search UID with matched keyword in Subject
header

IEMSC_SEARCH_BY_DATE

Search UID which matches a date or date range

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

93

APPENDIX C

CLIENT APl CONSTANTS

94

Client API Error Codes

Error Code

Description

IEMSC_NO_ERR

No error

IEMSC_MQ_INIT_FAIL

Unable to initialize the MQ subsystem

IEMSC_INVALID_PARAM

Invalid Paramater Passed to Function

IEMSC_INVALID_PART_NUMBER

Part Number Invalid for Given UID

IEMSC_ERR_NO_RECIPIENT

No Recipient Addresses Present

IEMSC_ERR_DECODE_STRING

Unable to Decode MIME Body Part

IEMSC_SPECIAL_FOLDER

Given Folder is a Special Folder

IEMSC_ERR_OPEN_MESSAGE_FILE

Cannot Open Message File for Read Access.
File may be missing or IEMSCPHP extension
does not have READ permission on the message
file.

IEMSC_ERR_WRITE_MESSAGE_FILE

Unable to write data to the message file. The
IEMSCPHP extension may not have WRITE per-
mission on the message file or disk full.

IEMSC_ERR_READ_MESSAGE_FILE

Unable to read the message file. The file may be
corrupted or missing.

IEMSC_ERR_SUBMIT_MESSAGE

Unable to submit the constructed message to the
MQ subsystem.

IEMSC_FAIL_CREATE_TMP_FILE

Unable to create temporary file. The [IEMSCPHP
extension may not have WRITE permission in the
IEMS temporary directory.

IEMSC_ERR_WRITE_TEMP_FILE

Unable to write data to the temporary file. The
IEMSCPHP extension may not have WRITE per-
mission to the temporary file or disk full.

IEMSC_UID_NOT_FOUND

The given UID cannot be found in the folder

IEMSC_FOLDER_ALREADY_EXISTS

The given folder name already exists

IEMSC_ERR_MESSAGE_NOT_FOUND

The message file cannot be found

IEMSC_FOLDER_NOT_EMPTY

The given folder is not empty - removal failed.

IEMSC_FOLDER_NOT_EXISTS

The given folder name does not exist.

IEMSC_FAIL_CREATE_FOLDER

Unable to create the new folder. The IEMSCPHP
extension may not have WRITE permission in the
IEMS Message Store subsystem.

IEMSC_FAIL_RENAME_FOLDER

Unable to rename the folder. The IEMSCPHP
extension may not have WRITE permission in the
IEMS Message Store subsystem.

IEMSC_INVALID_FOLDER_NAME

The given folder name is not in a valid format.

IEMSC_NOT_AUTHENTICATED

The given username is not authenticated.

IEMSC_ERR_INVALID_USER

The given username is not valid

IEMSC_ERR_INVALID_PWD

The given clear text password is not valid

IEMSC_ERR_INTERNAL_ERR

Internal Error - the system may have run out of
memory or other error in Message Store sub-
system.

IEMSC_ERR_READ_ATTACHMENT

Unable to read the file attachment when compos-
ing new mail message. The IEMSCPHP exten-
sion may not have READ permission for the file
specified in the filename passed value.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

CLIENT APl CONSTANTS

APPENDIX C

Error Code

Description

IEMSC_SESSION_EXPIRED

The login session has expired. The application
should direct the user to re-login.

IEMSC_INVALID_SESSION

The hashed password is not valid

IEMSC_ERR_INVALID_PASSWORD_FORMAT

The new password is not valid. The new pass-
word must contain at least 6 characters.

IEMSC_ERR_UPDATE_PASSWORD

System is unable to update the new password
with the IEMS Directory.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

95

APPENDIX C CLIENT APl CONSTANTS

96 INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

APPENDIX D

Message Store Naming
Issues

The IEMS Message Store subsystem uses a modified UTF7 encoding
scheme for storing file names. This naming convention is documented in
section 5.1.3 of RFC2060. It is used to store folder name in international lan-
guages such as Chinese and other non-ASCII character sets. For example,
the Chinese words

R

means 'China’. The UNICODE values are u20013 u22283 respectively.
When converted to UTF7 encoding, this folder name becomes &Ti1XCw-.

The IEMSCPHP extension functions always express folder name parameter
encoded in this UTF7 format, with the exception of the iemsc_renamefolder
and iemsc_createfolder functions. In these two functions, the newfolder-
name parameter should be encoded in UTF8 format. In this example, the
UTF8 byte stream for 'China’ is 0xE4B8AD 0xE59C8B respectively. These
two functions will convert the UTF8 encoded folder name into UTF7 format
on behalf of the application.

Note: Web programmer can make use of the ‘charset=utf-8' parameter
specified in the META header. The input folder name is converted
into UTF8 format by the browser before the value is submitted to
the Web server. To achieve this result, put the following META
header in your HTML page:

<META HTTP-EQUIV=CONTENT-TYPE CONTENT="TEXT/HTML CHARSET=UTF-8">

As the modified UTF7 encoding scheme is not supported by many currently
available browsers, it is best to encode file names using a decimal encodede
version of the Unicode character. The iemsc_utf7_to_decimal routing can be
used to convert UTF7 encoded folder name into this &#DDDDD; representa-
tion. The &#DDDDD; representation is supported by most of the modern
browsers including Internet Explorer 5, and 6 and Netscape 6.x and 7.x.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 97

APPENDIX D MESSAGE STORE NAMING ISSUES

98 INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

APPENDIX E

License Agreement

THIS AGREEMENT SETS FORTH THE TERMS AND CONDITIONS
UNDER WHICH THE SOFTWARE KNOWN AS IEMS API TOOLKIT WILL
BE LICENSED BY INTERNATIONAL MESSAGING ASSOCIATES TO YOU,
AND BY WHICH DERIVATIVE WORKS OF THE OPEN SOURCE AS PRO-
VIDED IN THE IEMS API TOOLKIT WILL BE LICENSED BY YOU TO IMA.
PLEASE READ THE FOLLOWING LICENSE CAREFULLY. ANY USE OF
THIS TOOLKIT CONSTITUTES ACCEPTANCE OF THIS LICENSE.

IEMS API License Agreement

BY USING THE IEMS API MODULE OR THE IEMS API ITSELF, AS PART
OR IN CONJUNCTION WITH, APPLICATIONS DEVELOPED, DISTRIB-
UTED OR IMPLEMENTED BY YOU OR ON YOUR BEHALF, YOU ARE
CONSENTING TO BE BOUND BY THE TERMS AND CONDITIONS SET
FORTH. IF YOU DO NOT AGREE WITH THESE TERMS, DO NOT USE
THE IEMS API MODULE OR THE IEMS API TOOLKIT ITSELF.

GRANT OF LICENSE: IMA grants you a non-exclusive, non-transferable
license to use the API Toolkit and accompanying documentation, as part or
in conjunction with, applications developed, distributed or implemented by
you or on your behalf. Redistribution and use in source and binary forms, with
or without modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code, with or without modification, must retain
the above copyright notice, this list of conditions and the following dis-
claimer.

2. Redistributions in binary form, with our without modification, must repro-
duce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this software must
display the following acknowledgment:

"This product includes software developed by the International Messag-
ing Associates Corporation for use with the Internet Exchange Messaging
Server (IEMS). (http://www.ima.com)"

4. The names "International Messaging Associates", "IMA", "Internet
Exchange Messaging Server", and "IEMS" must not be used to endorse
or promote products derived from this software without prior written per-
mission. For written permission, please contact sales@ima.com.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL 929

APPENDIX E

LICENSE AGREEMENT

100

5. Redistributions of any form whatsoever must retain the following acknowl-
edgment:

"This product includes software developed by the International Messaging
Associates Corporation for use with the Internet Exchange Messaging
Server (IEMS). (http://www.ima.com)"

RIGHTS OF IMA: You acknowledge that title and any rights to the docu-
mentation and any copy made by you remain the sole and exclusive property
of IMA. Any unauthorized modification and translation of the of the source
code or documentation is strictly prohibited. Any breach or other failure to
comply with the terms and conditions herein will entitle IMA to terminate this
license and seek all other appropriate legal remedies.

LIMITATION OF LIABILITY: THIS SOFTWARE IS PROVIDED BY INTER-
NATIONAL MESSAGING ASSOCIATES CORPORATION “AS IS” AND
ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL INTERNATIONAL MESSAGING ASSOCIATES CORPO-
RATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDI-
RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

GOVERNMENT RESTRICTED RIGHTS LEGEND (Applicable to U.S.
Government End-Users Only)

Use, duplication or disclosure by the United States Government is subject to
restrictions of Restricted Rights for computer software developed at pri-
vate expense as set forth in FAR Sec. 52.227-19 or DOD FAR Supplement
Sec. 252,227-7013(c)(1)(ii), and successor thereof, as applicable.

MISCELLANEOUS: This agreement will be governed and construed in
accordance with the substantive laws of the State where delivery of the soft-
ware occurred. If such delivery did not occur within a State or Territory of the
United States, then this agreement shall be governed by the substantive laws
of Hong Kong, and will in either case be without application of conflict or law
principles.This agreement is the entire agreement and supersedes any
other communications or advertising with respect to the software and accom-
panying documentation. Any modification of this agreement must be in writ-
ing and signed by an officer of IMA. If any provision of this agreement is held
invalid, the remainder of this agreement will continue in full force and effect.
If you have any questions, please write us in this address: IMA Services
Limited, 1303 Keen Hung Commercial Building, 80 Queen’s Road East,
Wan Chai, Hong Kong.

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

INDEX

A

Anti-virus 18

anti-virus 18

API Class Definition 21

API Toolkit 33

API_MQ.lib 34

Application Programming Interface 5
Authenticate 52, 53

Authentication 39

B

BSMTPIN 8
BSMTPOUT 8

C

cChannel

Add 29

Del 30

IsExist 29
CCIN 8
Channel Action Matrix 18
channel action matrix 19
Channel_Trace 19
Class cChannel 25
Class cEnvHeader 23
Class cMessage 22
Class cMQ 21
Class cUserInfo 24
Client API 39, 47, 69
cMQ

CloseMQChannel 29
DelMsg 28
GetMsg 28
GetMsgEnv 30
GetMsgPath 28
GetPathName 30
OpenMQChannel 27
PutMsg 27
ComposeMail 43, 65
Content Access 41, 80

CopyMessage 40, 61
CreateFolder 40, 54

D

DeleteFolder 40, 54
DeleteMessage 40, 61
directory lookup 17
Directory server 8

DL 8

diclose() 18

dlopen() 18

DLOUT 8

disym() 18

E

Envelope preprocesssing 17

F

Folder Access 40
folder.ntm 44

FreeBuffer 67
FreeFoldernames 40, 56
FreeLibrary() 18
FreeMimeBody 67
FreeString 67

G

GetAllFoldernames 40, 55
getbody.htm 44
GetEmbeddedHeaders 65
GetHomeDirectory 68
GetMessageHeader 64
GetMessagelnfo 40, 60
GetMessageSource 64
GetMimeBody 63
GetMimeStructure 62
GetPrevNextUID 40, 58

GetPrevNextUIDWithSearchKey 40, 59

GetProcAddress() 18
GetUIDs 40, 56

GetUIDsWithSearchKey 40, 57

H

Header files 34, 43

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

101

IEMS.CONF 18
IEMSC Class 48
iemsc_authenticate 43, 45, 71
iemsc_composemail 44, 83
iemsc_copymessage 44, 45, 79
iemsc_createfolder 44, 72
IEMSC_DEFAULT_SORT_DIRECTION 93
iemsc_deletefolder 44, 73
iemsc_deletemessage 44, 45, 80
IEMSC_ERR _DECODE_STRING 94
IEMSC_ERR _INTERNAL ERR 94
IEMSC_ERR_INVALID_PASSWORD_FORMA
T95
IEMSC_ERR_INVALID_PWD 94
IEMSC_ERR _INVALID USER 94
IEMSC_ERR_MESSAGE_NOT_FOUND 94
IEMSC_ERR _NO_RECIPIENT 94
IEMSC_ERR _OPEN_MESSAGE_FILE 94
IEMSC_ERR_READ ATTACHMENT 94
IEMSC_ERR_READ MESSAGE_FILE 94
IEMSC_ERR_SUBMIT_MESSAGE 94
IEMSC_ERR_UPDATE_PASSWORD 95
IEMSC_ERR WRITE_MESSAGE_FILE 94
IEMSC_ERR WRITE_TEMP_FILE 94
IEMSC_FAIL CREATE_FOLDER 94
IEMSC_FAIL_CREATE_TMP_FILE 94
IEMSC_FAIL_RENAME_FOLDER 94
IEMSC_FOLDER_ALREADY_EXISTS 94
IEMSC_FOLDER_NOT_EMPTY 94
IEMSC_FOLDER_NOT_EXISTS 94
iemsc_getembeddedheaders 43, 45, 82
iemsc_getmessagebody 43, 44, 45, 81
iemsc_getmessageheader 44, 82
iemsc_getmessageinfo 43, 44, 45, 78
iemsc_getmessagesinfo 43, 44, 78
iemsc_getmessagesource 44, 82
iemsc_getmessagestructure 43, 44, 45, 80
iemsc_getprevnextuid 43, 76
iemsc_getuids 43, 75
IEMSC_INVALID_FOLDER_NAME 94
IEMSC_INVALID_PARAM 94
IEMSC_INVALID_PART_NUMBER 94
IEMSC_INVALID_SESSION 95
iemsc_isread 43, 45, 85
iemsc_isspecialfolder 44, 85
iemsc_logout 45, 72
iemsc_markmessageasread 43, 45, 80
iemsc_movemessage 44, 45, 79
IEMSC_MQ_INIT_FAIL 94
IEMSC_NO_ERR 94
IEMSC_NOT_AUTHENTICATED 94
iemsc_readallfoldernames 43, 44, 75

102 INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

iemsc_readfolderattributes 43, 73
iemsc_readfolderattributes_with_size 44, 74
iemsc_renamefolder 44, 73
IEMSC_SEARCH_BY_DATE 93
IEMSC_SEARCH_BY_FROM 93
IEMSC_SEARCH_BY_SUBJECT 93
IEMSC_SEARCH_BY_TO 93
iemsc_searchprevnextuid 45, 77
iemsc_searchuids 44, 76
IEMSC_SESSION_EXPIRED 95
IEMSC_SORT_BY_DATE 93
IEMSC_SORT_BY_DEFAULT_KEY 93
IEMSC_SORT_BY_FROM 93
IEMSC_SORT_BY_SIZE 93
IEMSC_SORT_BY_SUBJECT 93
IEMSC_SORT_BY_TO 93
IEMSC_SORT_BY_UID 93
IEMSC_SORT_DIRECTION_ASCENDING 93
IEMSC_SORT_DIRECTION_DECENDING 93
IEMSC_SPECIAL_FOLDER 94
IEMSC_UID_NOT_FOUND 94
iemsc_updatepassword 45, 72
iemsc_utf7_to_decimal 43, 44, 85
iemscapi.dll 70

iemscphp.dl 70

iemscphp.dll 70

iemscphp.so 70

IEMTAL.INI 18

IMAP 17

input channels 15

IsSpecialFolder 67

L

LDAP 8
libiemscapi.so 70
libmqg.so 34
LoadLibrary() 18
LOCAL 8
LOCALOUT 8
login.htm 43
Logout 53

1

MarkMessageAsRead 40, 61
menu.htm 43

Message / RFC-822 41, 42
Message Access 40
Message Folder Access 72
Message Header 41
Message Store API 39

Message Submission 43, 65, 83

Message UID Access 75
MoveMessage 40, 61
MQ Server 8

MQAPI 5, 15

mqapi.h 34

Multi-Part MIME 41

N

newmail.htm 44
NOTESIN 8
NOTESOUT 8

P

passwd.htm 45

PHP 39, 69

PHP API 69

PHP Extension 69
PHP.INI 70

POP3 17

Preprocessor 17
Preprocessor Plug-ins 18
Program Flow 31

Q

queue.cfg 37

R

ReadFolderAttributes 40, 55
RenameFolder 40, 54
renfolder.htm 44

RFC2060 97

S

search.htm 44
sendmail.htm 44
Single Body MIME 41
SMTPC 8

SMTPD 8, 18
SpamArchive 18
SpambDelete 18

U

UID Access 75
UNICODE 97
UpdatePassword 53
UTF-7 40

UTF7 97
utf7_decimal 68
UTF-8 40

UTF8 97

\'

VC++ 47

vfolder.htm 43
viewextra.htm 44
viewmsg.htm 43
viewsearchmsg.htm 45

W

Web Mail Client 8, 43
wmc.php 45

Y4

Zend Extension 69

INTERNET EXCHANGE MESSAGING SERVER 7 PROGRAMMER’S MANUAL

103

	Contents
	Preface
	Overview
	Background
	Figure 1: IEMS System Architecture

	IEMS System Architecture
	IEMS APIs

	Introduction
	IEMS Modules
	MTA / Preprocessor
	Directory Services
	Distribution List Manager
	SMTPC (SMTP Client)
	SMTPD (SMTP Daemon)
	BSMTP
	Message Store
	LMDA (Bayesian Filtering / MailSort)
	Figure 2: LMDA Architecture

	MTA Shared Message Queue

	Chapter 1 - Message Queue API
	Message Queue API
	Figure 3: Message Flow
	Figure 4: Channel I/O Mapping
	Figure 5: Tasks Performed by the Preprocessor

	Envelope Preprocessing & Directory Lookup Stage
	Calling of the Preprocessor Plug-ins Stage
	Figure 6: Channel Action Matrix

	Chapter 2 - MQ API Class Definitions
	MQ API Class Definitions
	Class cMQ
	Class Declaration
	Methods Used

	Class cMessage
	Class Declaration
	Methods Used

	Class cEnvHeader
	Class Declaration
	Methods Used

	Class cUserInfo
	Class Declaration
	Methods Used

	Class cChannel
	Class Declaration
	Methods Used

	Chapter 3 - MQ API Function Reference
	MQ API Function Reference
	cMQ:: OpenMQChannel
	cMQ::PutMsg
	cMQ:: GetMsgPath
	cMQ::GetMsg
	cMQ::DelMsg
	cMQ:: CloseMQChannel
	cChannel:: IsExist
	cChannel:: Add
	cChannel:: Del
	cMQ:: GetPathName
	cMQ:: GetMsgEnv
	MQ API Program Flow

	Chapter 4 - How To Use The MQ API
	How To Use The MQ API
	Prerequisites
	System Requirements

	MQ API Toolkit
	Building Applications Using MQAPI
	Header files
	mqapi.h
	API_MQ.lib or libmq.so
	Figure 7: The Project Setting Dialog box

	Adding Preprocessor Plug-ins In The Configuration ...
	Creating The New Channel For Your Application
	Figure 8: The Channel Action Matrix
	Conclusion

	Chapter 5 - IEMS Client API
	IEMS Client API
	Figure 9: IEMS Client API

	Authentication / Password Management
	Message Store Access
	Folder Access
	Message Access
	Message Header and Content Access
	Figure 10: Single Body MIME
	Figure 11: Multi-Part MIME
	Figure 12: Message / RFC-822

	Message Submission
	Sample Applications
	Web Mail Client

	Chapter 6 - Client C++ Interface
	Client API C++ Interface
	Installation
	Microsoft Windows (Win32)
	Linux
	Software License

	The IEMSC Class
	Authentication / Password Management
	Authenticate (Form 1)
	Authenticate (Form 2)
	Logout
	UpdatePassword

	Message Folder Access
	CreateFolder
	RenameFolder
	DeleteFolder
	ReadFolderAttributes
	GetAllFoldernames
	FreeFoldernames

	Message UID Access
	GetUIDs
	GetUIDsWithSearchKey
	GetPrevNextUID
	GetPrevNextUIDWithSearchKey
	GetMessageInfo
	CopyMessage
	MoveMessage
	DeleteMessage
	MarkMessageAsRead

	Message Header / Content Access
	GetMimeStructure
	GetMimeBody
	GetMessageHeader
	GetMessageSource
	GetEmbeddedHeaders

	Message Submission
	ComposeMail

	Other Functions
	FreeString
	FreeBuffer
	FreeMimeBody
	IsSpecialFolder
	utf7_decimal
	GetHomeDirectory

	Chapter 7 - Client API PHP Interface
	Client API PHP Interface
	Installation
	Microsoft Windows (Win32)
	Linux
	Software License

	Authentication / Password Management
	iemsc_authenticate
	iemsc_logout
	iemsc_updatepassword

	Message Folder Access
	iemsc_createfolder
	iemsc_renamefolder
	iemsc_deletefolder
	iemsc_readfolderattributes
	iemsc_readfolderattributes_with_size
	iemsc_readallfoldernames

	Message UID Access
	iemsc_getuids
	iemsc_getprevnextuid
	iemsc_searchuids
	iemsc_searchprevnextuid
	iemsc_getmessageinfo
	iemsc_getmessagesinfo
	iemsc_copymessage
	iemsc_movemessage
	iemsc_deletemessage
	iemsc_markmessageasread

	Message Header / Content Access
	iemsc_getmessagestructure
	iemsc_getmessagebody
	iemsc_getmessageheader
	iemsc_getmessagesource
	iemsc_getembeddedheaders

	Message Submission
	iemsc_composemail

	Other Functions
	iemsc_isread
	iemsc_isspecialfolder
	iemsc_utf7_to_decimal

	Appendix A - TESTMQ.C Sample Program
	TESTMQ.C Sample Program

	Appendix B - MQ API Error Codes
	MQ API Error Codes

	Appendix C - Client API Constants
	Client API Constants
	UID Sort Fields
	UID Sort Order
	UID Search Field
	Client API Error Codes

	Appendix D - Message Store Naming Issues
	Message Store Naming Issues

	Appendix E - License Agreement
	License Agreement

	Index

